Optimal Matching with Minimal Deviation from Fine Balance in a Study of Obesity and Surgical Outcomes
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lu, Bo & Greevy, Robert & Xu, Xinyi & Beck, Cole, 2011. "Optimal Nonbipartite Matching and Its Statistical Applications," The American Statistician, American Statistical Association, vol. 65(1), pages 21-30.
- Tan, Zhiqiang, 2006. "A Distributional Approach for Causal Inference Using Propensity Scores," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1619-1637, December.
- Heller, Ruth & Rosenbaum, Paul R. & Small, Dylan S., 2010. "Using the Cross-Match Test to Appraise Covariate Balance in Matched Pairs," The American Statistician, American Statistical Association, vol. 64(4), pages 299-309.
- Ben B. Hansen, 2008. "The prognostic analogue of the propensity score," Biometrika, Biometrika Trust, vol. 95(2), pages 481-488.
- Rosenbaum, Paul R. & Ross, Richard N. & Silber, Jeffrey H., 2007. "Minimum Distance Matched Sampling With Fine Balance in an Observational Study of Treatment for Ovarian Cancer," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 75-83, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Samuel D. Pimentel & Lauren Vollmer Forrow & Jonathan Gellar & Jiaqi Li, 2020. "Optimal matching approaches in health policy evaluations under rolling enrolment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1411-1435, October.
- Ruoqi Yu, 2021. "Evaluating and improving a matched comparison of antidepressants and bone density," Biometrics, The International Biometric Society, vol. 77(4), pages 1276-1288, December.
- Jason J. Sauppe & Sheldon H. Jacobson, 2017. "The role of covariate balance in observational studies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 323-344, June.
- Tian Heong Chan & Francis de Véricourt & Omar Besbes, 2019. "Contracting in Medical Equipment Maintenance Services: An Empirical Investigation," Management Science, INFORMS, vol. 65(3), pages 1136-1150, March.
- Jason J. Sauppe & Sheldon H. Jacobson & Edward C. Sewell, 2014. "Complexity and Approximation Results for the Balance Optimization Subset Selection Model for Causal Inference in Observational Studies," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 547-566, August.
- Luke Keele & Steve Harris & Samuel D. Pimentel & Richard Grieve, 2020. "Stronger instruments and refined covariate balance in an observational study of the effectiveness of prompt admission to intensive care units," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1501-1521, October.
- Bikram Karmakar, 2022. "An approximation algorithm for blocking of an experimental design," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1726-1750, November.
- Ruoqi Yu, 2023. "How well can fine balance work for covariate balancing," Biometrics, The International Biometric Society, vol. 79(3), pages 2346-2356, September.
- Hochbaum, Dorit S. & Rao, Xu & Sauppe, Jason, 2022. "Network flow methods for the minimum covariate imbalance problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 827-836.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- José R. Zubizarreta, 2012. "Using Mixed Integer Programming for Matching in an Observational Study of Kidney Failure After Surgery," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1360-1371, December.
- Jason J. Sauppe & Sheldon H. Jacobson & Edward C. Sewell, 2014. "Complexity and Approximation Results for the Balance Optimization Subset Selection Model for Causal Inference in Observational Studies," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 547-566, August.
- Paul R. Rosenbaum, 2013. "Impact of Multiple Matched Controls on Design Sensitivity in Observational Studies," Biometrics, The International Biometric Society, vol. 69(1), pages 118-127, March.
- Samuel D. Pimentel & Dylan S. Small & Paul R. Rosenbaum, 2016. "Constructed Second Control Groups and Attenuation of Unmeasured Biases," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1157-1167, July.
- Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
- Jason J. Sauppe & Sheldon H. Jacobson, 2017. "The role of covariate balance in observational studies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 323-344, June.
- Nicholas Longford & Ioana C. Salagean, 2013. "A study of the labour market trajectories in the Grand Duchy of Luxembourg," Economics Working Papers 1396, Department of Economics and Business, Universitat Pompeu Fabra.
- Chenyin Gao & Katherine Jenny Thompson & Jae Kwang Kim & Shu Yang, 2022. "Nearest neighbour ratio imputation with incomplete multinomial outcome in survey sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1903-1930, October.
- Brian Quistorff & Gentry Johnson, 2020. "Machine Learning for Experimental Design: Methods for Improved Blocking," Papers 2010.15966, arXiv.org.
- Jinglong Zhao, 2023. "Adaptive Neyman Allocation," Papers 2309.08808, arXiv.org, revised Sep 2023.
- Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2021.
"The Augmented Synthetic Control Method,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1789-1803, October.
- Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2018. "The Augmented Synthetic Control Method," Papers 1811.04170, arXiv.org, revised Jul 2020.
- Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2021. "The Augmented Synthetic Control Method," NBER Working Papers 28885, National Bureau of Economic Research, Inc.
- Florian Gunsilius & Yuliang Xu, 2021. "Matching for causal effects via multimarginal unbalanced optimal transport," Papers 2112.04398, arXiv.org, revised Jul 2022.
- Uysal, S. Derya, 2013. "Doubly Robust Estimation of Causal Effects with Multivalued Treatments," Economics Series 297, Institute for Advanced Studies.
- Lamar Pierce & Alex Rees-Jones & Charlotte Blank, 2020. "The Negative Consequences of Loss-Framed Performance Incentives," NBER Working Papers 26619, National Bureau of Economic Research, Inc.
- Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2021. "Robust Causal Estimation from Observational Studies Using Penalized Spline of Propensity Score for Treatment Comparison," Stats, MDPI, vol. 4(2), pages 1-21, June.
- Zhang, Yuyang & Schnell, Patrick & Song, Chi & Huang, Bin & Lu, Bo, 2021. "Subgroup causal effect identification and estimation via matching tree," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Bo Zhang & Siyu Heng & Emily J. MacKay & Ting Ye, 2022. "Bridging preference‐based instrumental variable studies and cluster‐randomized encouragement experiments: Study design, noncompliance, and average cluster effect ratio," Biometrics, The International Biometric Society, vol. 78(4), pages 1639-1650, December.
- Arpino, Bruno & Mealli, Fabrizia, 2011.
"The specification of the propensity score in multilevel observational studies,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1770-1780, April.
- Arpino, Bruno & Mealli, Fabrizia, 2008. "The specification of the propensity score in multilevel observational studies," MPRA Paper 17407, University Library of Munich, Germany.
- Bruno Arpino & Fabrizia Mealli, 2008. "The specification of the propensity score in multilevel observational studies," Working Papers 006, "Carlo F. Dondena" Centre for Research on Social Dynamics (DONDENA), Università Commerciale Luigi Bocconi.
- Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
- Yu-Jen Cheng & Mei-Cheng Wang, 2012. "Estimating Propensity Scores and Causal Survival Functions Using Prevalent Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 707-716, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:68:y:2012:i:2:p:628-636. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.