IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v66y2010i3p684-693.html
   My bibliography  Save this article

Detecting Genomic Aberrations Using Products in a Multiscale Analysis

Author

Listed:
  • Xuesong Yu
  • Timothy W. Randolph
  • Hua Tang
  • Li Hsu

Abstract

No abstract is available for this item.

Suggested Citation

  • Xuesong Yu & Timothy W. Randolph & Hua Tang & Li Hsu, 2010. "Detecting Genomic Aberrations Using Products in a Multiscale Analysis," Biometrics, The International Biometric Society, vol. 66(3), pages 684-693, September.
  • Handle: RePEc:bla:biomet:v:66:y:2010:i:3:p:684-693
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2009.01337.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nancy R. Zhang & David O. Siegmund, 2007. "A Modified Bayes Information Criterion with Applications to the Analysis of Comparative Genomic Hybridization Data," Biometrics, The International Biometric Society, vol. 63(1), pages 22-32, March.
    2. Guha, Subharup & Li, Yi & Neuberg, Donna, 2008. "Bayesian Hidden Markov Modeling of Array CGH Data," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 485-497, June.
    3. F. Picard & S. Robin & E. Lebarbier & J.-J. Daudin, 2007. "A Segmentation/Clustering Model for the Analysis of Array CGH Data," Biometrics, The International Biometric Society, vol. 63(3), pages 758-766, September.
    4. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    5. Fridlyand, Jane & Snijders, Antoine M. & Pinkel, Dan & Albertson, Donna G. & Jain, A.N.Ajay N., 2004. "Hidden Markov models approach to the analysis of array CGH data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 132-153, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Chuan Tai & Mark N. Kvale & John S. Witte, 2010. "Segmentation and Estimation for SNP Microarrays: A Bayesian Multiple Change-Point Approach," Biometrics, The International Biometric Society, vol. 66(3), pages 675-683, September.
    2. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    3. Huixia Judy Wang & Jianhua Hu, 2011. "Identification of Differential Aberrations in Multiple-Sample Array CGH Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 353-362, June.
    4. Leighton Pritchard & Hui Liu & Clare Booth & Emma Douglas & Patrice François & Jacques Schrenzel & Peter E Hedley & Paul R J Birch & Ian K Toth, 2009. "Microarray Comparative Genomic Hybridisation Analysis Incorporating Genomic Organisation, and Application to Enterobacterial Plant Pathogens," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-17, August.
    5. S Kovács & P Bühlmann & H Li & A Munk, 2023. "Seeded binary segmentation: a general methodology for fast and optimal changepoint detection," Biometrika, Biometrika Trust, vol. 110(1), pages 249-256.
    6. Ebrahimi, Nader, 2008. "Simultaneous control of false positives and false negatives in multiple hypotheses testing," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 437-450, March.
    7. Yana Melnykov & Marcus Perry, 2024. "On Robust Change Point Detection and Estimation in Multisubject Studies," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 827-879, August.
    8. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    9. Bertschek, Irene & Ohnemus, Jörg & Erdsiek, Daniel & Rammer, Christian & Andres, Raphaela & Kimpeler, Simone, 2019. "Monitoringbericht Kultur- und Kreativwirtschaft 2018," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 203157.
    10. Shi, Xuesheng & Gallagher, Colin & Lund, Robert & Killick, Rebecca, 2022. "A comparison of single and multiple changepoint techniques for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    11. Jonghyun Yun & Tao Wang & Guanghua Xiao, 2014. "Bayesian hidden Markov models to identify RNA–protein interaction sites in PAR-CLIP," Biometrics, The International Biometric Society, vol. 70(2), pages 430-440, June.
    12. Love Michael I. & Myšičková Alena & Sun Ruping & Kalscheuer Vera & Vingron Martin & Haas Stefan A., 2011. "Modeling Read Counts for CNV Detection in Exome Sequencing Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-30, November.
    13. Yann Guédon, 2013. "Exploring the latent segmentation space for the assessment of multiple change-point models," Computational Statistics, Springer, vol. 28(6), pages 2641-2678, December.
    14. Debi P Bal & Badri N Rath, 2019. "Nonlinear causality between crude oil price and exchange rate: A comparative study of China and India - A Reassessment," Economics Bulletin, AccessEcon, vol. 39(1), pages 592-604.
    15. Pittelkow Yvonne E & Wilson Susan R, 2003. "Visualisation of Gene Expression Data - the GE-biplot, the Chip-plot and the Gene-plot," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 2(1), pages 1-19, September.
    16. Harris, David & Leybourne, Stephen J. & Taylor, A.M. Robert, 2016. "Tests of the co-integration rank in VAR models in the presence of a possible break in trend at an unknown point," Journal of Econometrics, Elsevier, vol. 192(2), pages 451-467.
    17. Davis, Richard A. & Hancock, Stacey A. & Yao, Yi-Ching, 2016. "On consistency of minimum description length model selection for piecewise autoregressions," Journal of Econometrics, Elsevier, vol. 194(2), pages 360-368.
    18. Bergamelli, Michele & Bianchi, Annamaria & Khalaf, Lynda & Urga, Giovanni, 2019. "Combining p-values to test for multiple structural breaks in cointegrated regressions," Journal of Econometrics, Elsevier, vol. 211(2), pages 461-482.
    19. Vincent Guigues, 2012. "Nonparametric multivariate breakpoint detection for the means, variances, and covariances of a discrete time stochastic process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 857-882, December.
    20. Kurozumi, Eiji & Tuvaandorj, Purevdorj, 2011. "Model selection criteria in multivariate models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 164(2), pages 218-238, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:66:y:2010:i:3:p:684-693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.