IDEAS home Printed from https://ideas.repec.org/a/bla/anzsta/v45y2003i2p217-228.html
   My bibliography  Save this article

Prediction Error Property of the Lasso Estimator and its Generalization

Author

Listed:
  • Fuchun Huang

Abstract

The lasso procedure is an estimator‐shrinkage and variable selection method. This paper shows that there always exists an interval of tuning parameter values such that the corresponding mean squared prediction error for the lasso estimator is smaller than for the ordinary least squares estimator. For an estimator satisfying some condition such as unbiasedness, the paper defines the corresponding generalized lasso estimator. Its mean squared prediction error is shown to be smaller than that of the estimator for values of the tuning parameter in some interval. This implies that all unbiased estimators are not admissible. Simulation results for five models support the theoretical results.

Suggested Citation

  • Fuchun Huang, 2003. "Prediction Error Property of the Lasso Estimator and its Generalization," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 45(2), pages 217-228, June.
  • Handle: RePEc:bla:anzsta:v:45:y:2003:i:2:p:217-228
    DOI: 10.1111/1467-842X.00277
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-842X.00277
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-842X.00277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoonsuh Jung, 2018. "Multiple predicting K-fold cross-validation for model selection," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 197-215, January.
    2. Ismail Shah & Hina Naz & Sajid Ali & Amani Almohaimeed & Showkat Ahmad Lone, 2023. "A New Quantile-Based Approach for LASSO Estimation," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    3. Kei Hirose & Miyuki Imada, 2018. "Sparse factor regression via penalized maximum likelihood estimation," Statistical Papers, Springer, vol. 59(2), pages 633-662, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:anzsta:v:45:y:2003:i:2:p:217-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1369-1473 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.