IDEAS home Printed from https://ideas.repec.org/a/bla/acctfi/v59y2019is2p1947-1975.html
   My bibliography  Save this article

Forecasting realised volatility: a Markov switching approach with time‐varying transition probabilities

Author

Listed:
  • Xunxiao Wang
  • Keshab Shrestha
  • Qi Sun

Abstract

This paper introduces a markov‐switching heterogeneous autoregressive (MS‐HAR) model with time‐varying transition probabilities (TVTP) for the realised volatility of Shanghai securities composite index returns. Its various extensions have been obtained by including negative returns outside trading hours in addition to the leverage effects and trading volume. The findings show asymmetries in the impact of explanatory variables on the realised volatility. Moreover, the out‐of‐sample results show that the benchmark MS‐HAR with TVTP model and its extensions consistently outperform the simple HAR model, MS‐HAR model with constant transition probabilities (CTP) and their extensions. These results are robust to alternative realised measurements, and have economic implications.

Suggested Citation

  • Xunxiao Wang & Keshab Shrestha & Qi Sun, 2019. "Forecasting realised volatility: a Markov switching approach with time‐varying transition probabilities," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 59(S2), pages 1947-1975, November.
  • Handle: RePEc:bla:acctfi:v:59:y:2019:i:s2:p:1947-1975
    DOI: 10.1111/acfi.12503
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/acfi.12503
    Download Restriction: no

    File URL: https://libkey.io/10.1111/acfi.12503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin Zhang & He Ni & Hao Xu, 2023. "Forecasting models for the Chinese macroeconomy in a data‐rich environment: Evidence from large dimensional approximate factor models with mixed‐frequency data," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 719-767, March.
    2. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    3. Wang, Lu & Ma, Feng & Hao, Jianyang & Gao, Xinxin, 2021. "Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?," International Review of Financial Analysis, Elsevier, vol. 76(C).
    4. Chen, Zhonglu & Liang, Chao & Umar, Muhammad, 2021. "Is investor sentiment stronger than VIX and uncertainty indices in predicting energy volatility?," Resources Policy, Elsevier, vol. 74(C).
    5. Zhao, Yixiu & Upreti, Vineet & Cai, Yuzhi, 2021. "Stock returns, quantile autocorrelation, and volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 73(C).
    6. Jiqian Wang & Feng Ma & Chao Liang & Zhonglu Chen, 2022. "Volatility forecasting revisited using Markov‐switching with time‐varying probability transition," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 1387-1400, January.
    7. Chen, Juan & Xiao, Zuoping & Bai, Jiancheng & Guo, Hongling, 2023. "Predicting volatility in natural gas under a cloud of uncertainties," Resources Policy, Elsevier, vol. 82(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:acctfi:v:59:y:2019:i:s2:p:1947-1975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaanzea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.