Author
Listed:
- Chika A. Okonkwo
(Directorate of Research and Innovation, Nnamdi Azikiwe University Awka Nigeria)
- Obioma E. Achugbu
(Chemical Engineering Department, Nnamdi Azikiwe University Awka Nigeria)
- Ifeoma ObioraOkafor
(Chemical Engineering Department, Nnamdi Azikiwe University Awka Nigeria)
- Ukamaka V. Alison
(Computer Science Education Department, Nnamdi Azikiwe University Awka Nigeria)
Abstract
Doping and surface modification of porous carbon materials derived from biomass are part of the research hotspots that promote high performance and low cost of electrode materials for supercapacitors, owing to advantage of tunable unique structure of renewable biomass. Nitrogen-rich spirulina extract impregnated castor shell was used to effectively regulate and modify the surface morphology of biomass carbon by KOH activation and high-temperature calcination. The prepared porous carbon exhibits nitrogen-rich micro-mesoporous carbon with unique interconnected network structure and higher specific surface area (1527 m2 g-1) after the high temperature treatment for supercapacitor electrode. The nitrogen-rich organic functional groups derived from extract of spirulina improve interaction of KOH and castor shells responsible for formation of unique interconnected micro-mesoporous structure. The as-prepared nitrogen doped micro-mesoporous carbon contributes to enhance charge transfer, and to decrease mass transfer resistance of supercapacitor electrode. A good electrochemical performance with high specific capacitance of 333 F g-1 at 1 A g-1 was obtained. The charge/discharge cycling behavior shows only loss of 0.3 % of total capacity after 10,000 cycles at 10 A g-1. The two-electrode configuration of assembled CSSK material displayed a remarkable energy density of 10 Wh kg-1 at a power density of 600 W kg-1 and good cycling behavior (after 10000 cycles 91.7 % retention of specific capacitance). Thus, strategy of the extract mediated synthesis is facile and effective to improve the performance of porous carbon for promising candidates as low-cost electrode materials for supercapacitors.
Suggested Citation
Chika A. Okonkwo & Obioma E. Achugbu & Ifeoma ObioraOkafor & Ukamaka V. Alison, 2024.
"Biomass Self-Nitrogen Doped Mesoporous Carbon Electrode for Supercapacitors,"
International Journal of Research and Innovation in Applied Science, International Journal of Research and Innovation in Applied Science (IJRIAS), vol. 9(8), pages 262-280, August.
Handle:
RePEc:bjf:journl:v:9:y:2024:i:8:p:262-280
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjf:journl:v:9:y:2024:i:8:p:262-280. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrias/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.