Author
Listed:
- Grace W. kimani
(Department of Pure and Applied Science, Kirinyaga University, Kerugoya, Kenya)
- J.K Mwai
(Department of Pure and Applied Science, Kirinyaga University, Kerugoya, Kenya)
- E. Mwangi
(Department of Pure and Applied Science, Kirinyaga University, Kerugoya, Kenya)
Abstract
This paper presents a hybrid deep learning model that combines Deep Neural Networks (DNNs) and Recurrent Neural Networks (RNNs) to enhance credit score predictions, especially for people who have a short credit history. In these situations, traditional credit scoring techniques frequently fall short, misclassifying creditworthy applicants and costing lenders money. Neural network models and ensemble methods are used in the model’s data preparation to find intricate patterns. Metrics demonstrating the hybrid RNN+DNN model’s superior performance over standalone models include an AUC-ROC score of 0.7971 and enhanced outcomes via stratified K-fold cross-validation. The hybrid model also achieves high sensitivity, specificity, and accuracy. LSTM units, dense layers, batch size, epochs, L2 regularization, and dropout rates are all part of the model architecture. Although the study was successful, it had limitations that pertain to interpretability, computing requirements and dataset quality. To guarantee accuracy and equity in credit assessment, future research should concentrate on refining hyperparameters, increasing computational effectiveness, and verifying the model using actual credit scoring systems.
Suggested Citation
Grace W. kimani & J.K Mwai & E. Mwangi, 2024.
"A Deep Learning Based Hybrid Model Development for Enhanced Credit Score Prediction,"
International Journal of Research and Innovation in Applied Science, International Journal of Research and Innovation in Applied Science (IJRIAS), vol. 9(7), pages 250-262, July.
Handle:
RePEc:bjf:journl:v:9:y:2024:i:7:p:250-262
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjf:journl:v:9:y:2024:i:7:p:250-262. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrias/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.