Author
Listed:
- Ibewesi, MaryJane Chinyere
(Department of Statistics Nnamdi Azikiwe University, Awka Nigeria)
- Uzuke Chinwendu Alice
(Department of Statistics Nnamdi Azikiwe University, Awka Nigeria)
Abstract
This work employed machine learning methods – decision tree algorithm, support vector machine (SVM) and logistic regression to predict health risk outcome of pregnant women based on their vital signs. The aim was to determine which of the model most suitable for the prediction of health risk for any pregnant woman. Evaluation of the methods were done using Accuracy, Precision, F1-Score and recall. The results revealed that the Decision tree model achieved the highest accuracy of 0.8669 (86.99%), that indicates correct prediction in 86.99% of the cases. Also, it achieved the highest precision for all the risk categories (high_risk, low_risk and mid_risk) with values (87%, 86% and 75% respectively) implying lower likelihood of false positive predictions for all risk categories. The Decision Tree model appears to be a promising approach for predicting the impact of vital signs on health risk of pregnant mothers. It exhibited high precision, high recall (sensitivity) and a balanced F1-score, suggesting accurate predictions with very low rate of false positives.
Suggested Citation
Ibewesi, MaryJane Chinyere & Uzuke Chinwendu Alice, 2024.
"Maternal Health Risk Prediction Using Machine Learning Methods,"
International Journal of Research and Innovation in Applied Science, International Journal of Research and Innovation in Applied Science (IJRIAS), vol. 9(4), pages 376-393, April.
Handle:
RePEc:bjf:journl:v:9:y:2024:i:4:p:376-393
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjf:journl:v:9:y:2024:i:4:p:376-393. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrias/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.