Author
Listed:
- Aruna T
(Research scholar, Department of Civil Engineering, UVCE -Bengaluru)
- K.V.S.B Raju
(Associate Professor, Department of Civil Engineering, UVCE-Bengaluru)
- Swathi Gowda
(ME student, Department of Civil Engineering, UVCE-Bengaluru)
Abstract
The combination of piles and raft foundation is known as piled raft foundation. Piled raft foundations have proven to be more cost-effective and capable of meeting safe bearing capacity and serviceability norms in the case of high-rise buildings on cohesionless soil. The behavior of a stacked raft foundation is influenced by the piles, raft, and soil. The stacked raft system’s bearing capacity is improved and settlement is minimized when the ground beneath the raft foundation bears the burden of supporting the applied loads. The piled raft foundation minimizes total settlement and improves bearing capacity more than the raft foundation. When isolated footings cover more than 70% of the building area under a superstructure, raft foundations are used, and the present study focuses on the vertical load bearing capability of piled raft foundation systems on cohesionless soil for concentric loading. The use of strategically positioned piles increases the load capacity of the raft while reducing differential settlement. The present study sheds some light on the use of piles as raft foundation settlement reducers, as well as the behavior of a piled raft in sand. A series of small-scale model experiments were carried out. The present investigation studies by varying pile length and alignment on the ultimate load of piled raft foundation. The results indicate that for a 10mm raft thickness, installing 4 piles, 6 piles, and 9 piles by varying L/D ratios of 5,10,15,20 carries significant load. In this present work for a 50mm length of pile, and the value of load improvement ratio increases by 36 percent, 60 percent, and 68 percent, respectively, when compared to plain raft.
Suggested Citation
Aruna T & K.V.S.B Raju & Swathi Gowda, 2022.
"Experimental Investigation of piled raft foundation on Cohesionless Soil,"
International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 9(2), pages 113-118, February.
Handle:
RePEc:bjc:journl:v:9:y:2022:i:2:p:113-118
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:9:y:2022:i:2:p:113-118. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.