Author
Listed:
- Peter Paul Issah
(Department of Computer Science, Kwame Nkrumah University of Science and Technology, Ghana)
- Ransford Ganyo
(Department of Mathematics, University of Cape Coast, Ghana)
Abstract
Network security is essential for data sharing on the internet. Traditional methods such as firewalls cannot detect fragmented packets and are often outmaneuvered by increasingly sophisticated attackers, resulting in productivity losses, financial damage, and reputational harm. This study investigates the use of machine learning (ML) models in developing effective intrusion detection systems (IDS) using signature-based methods. The research leverages the UNSW-NB15 dataset and compares four ML algorithms: K-Nearest Neighbor (KNN), Random Forest (RF), Bayesian Network (Bayes Net), and Decision Tree (J48), with feature reduction applied using Principal Component Analysis (PCA) to improve efficiency. The models were built and evaluated using the WEKA platform, with 10-fold cross-validation applied to assess accuracy, precision, recall, and F-measure. Results show that J48 significantly outperforms the other algorithms in terms of overall accuracy, while Bayes Net produces the least accurate results. These findings underscore the efficacy of J48 and Random Forest in signature-based IDS for network security.
Suggested Citation
Peter Paul Issah & Ransford Ganyo, 2024.
"Harnessing Machine Learning for Adaptive Signature-Based Network Intrusion Detection: A Simulation-Driven Approach,"
International Journal of Latest Technology in Engineering, Management & Applied Science, International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), vol. 13(10), pages 181-192, October.
Handle:
RePEc:bjb:journl:v:13:y:2024:i:10:p:181-192
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjb:journl:v:13:y:2024:i:10:p:181-192. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Pawan Verma (email available below). General contact details of provider: https://www.ijltemas.in/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.