Author
Abstract
Purpose: The purpose of this study is to explore how artificial intelligence (AI) becomes a part of data visualization. Thus, data from complex datasets are transformed into dynamic, interactive, and personalized visual experiences that will help in deeper insights and actionable knowledge. The research is supposed to design a holistic system and rules for using AI to make data visualization more effective and super interactive for the users. Methodology: The methodology involves the in-depth examination of artificial intelligence-based data visualization tools and platforms by using case studies. The study analyses the impact of AI technologies such as machine learning, natural language processing, and augmented and virtual reality on the scalability, interactivity, and personalization of data visualizations. The sentence also talks about the analysis of the moral factors that are part of the process of introducing AI in data visualization. Findings: The findings indicate that AI greatly improves the process and the quality of data visualization, thus, it makes possible the management of big, complicated, multi-dimensional datasets in a more efficient and precise way. The AI-driven tools give the users the opportunity to see the actions that are happening in real-time, predict the results, and personalize the tools according to their individual needs, thereby increasing the decision-making processes. Furthermore, ethical issues like data privacy, bias, and transparency must be well managed. This research has the distinctive feature of providing a theoretical framework that emphasizes the importance of AI in the development of data visualization technologies. Unique contribution to theory, policy and practice: In practice, it gives the rules for the implementation of AI tools to achieve more effective and user-focused visualizations. The policy focuses on the necessity of ethical standards in AI deployments, which means the data visualization practices should be transparent, accountable, and bias-free, thus creating trust and reliability in the AI applications.
Suggested Citation
Siva Karthik Devineni, 2024.
"AI-Enhanced Data Visualization: Transforming Complex Data into Actionable Insights,"
Journal of Technology and Systems, CARI Journals Limited, vol. 6(3), pages 52-77.
Handle:
RePEc:bhx:ojtjts:v:6:y:2024:i:3:p:52-77:id:1911
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bhx:ojtjts:v:6:y:2024:i:3:p:52-77:id:1911. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chief Editor (email available below). General contact details of provider: https://www.carijournals.org/journals/index.php/JTS/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.