IDEAS home Printed from https://ideas.repec.org/a/bgo/journl/v8y2024i1p91-105.html
   My bibliography  Save this article

A Novel Hybrid Regression Model for Banking Loss Estimation

Author

Listed:
  • Pınar Karadayı Ataş

    (İstanbul Arel University)

Abstract

Given the critical need to identify financial risks in the banking sector early, this study presents a novel approach that uses historical financial ratios from the FDIC database to predict bank failures in the United States. Accurate estimation of potential losses is essential for risk management and decision-making procedures. We present a novel hybrid approach to loss estimation in the context of bank failures in this study. ElasticNet regression and relevant data extraction techniques are combined in our method to improve prediction accuracy. We conducted thorough experiments and evaluated our hybrid approach's performance against that of conventional regression techniques. With a remarkably low Mean Squared Error (MSE) of 0.001, a significantly high R-squared value of 0.98, and an Explained Variance Score of 0.95, our proposed model demonstrates superior performance compared to existing methodologies. The accuracy of our method is further demonstrated by the Mean Absolute Error (MAE) of 1200 units. Our results highlight the potential of our hybrid approach to transform loss estimation in the banking and finance domain, offering superior predictive capabilities and more accurate loss estimations.

Suggested Citation

  • Pınar Karadayı Ataş, 2024. "A Novel Hybrid Regression Model for Banking Loss Estimation," Bingol University Journal of Economics and Administrative Sciences, Bingol University, Faculty of Economics and Administrative Sciences, vol. 8(1), pages 91-105, June.
  • Handle: RePEc:bgo:journl:v:8:y:2024:i:1:p:91-105
    DOI: https://doi.org/10.33399/biibfad.1391666
    as

    Download full text from publisher

    File URL: http://repec.bingol.edu.tr/bgo/A-Novel-Hybrid-Regression-Model-for-Banking-Loss-Estimation.pdf
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.33399/biibfad.1391666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Financial risk analysis; financial stability assessment; bank risk management; machine learning;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G38 - Financial Economics - - Corporate Finance and Governance - - - Government Policy and Regulation
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bgo:journl:v:8:y:2024:i:1:p:91-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Halim Tatli (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.