IDEAS home Printed from https://ideas.repec.org/a/bgo/journl/v8y2024i1p31-46.html
   My bibliography  Save this article

Evrişimsel Sinir Ağları Tabanlı Derin Öğrenme Yöntemiyle Müşteri Şikayetlerinin Sınıflandırılması

Author

Listed:
  • Murat Fatih Tuna

    (Sivas Cumhuriyet University)

  • Yasin Görmez

    (Sivas Cumhuriyet University)

Abstract

Günümüzde, artan nüfus ve değişen ihtiyaçlar doğrultusunda firma sayıları giderek artmakta ve firmalar büyümektedir. Bu bağlamda, aynı alanda faaliyet gösteren birçok firma ortaya çıkmakta, bu nedenle firmaların rekabet kabiliyetini artırması gerekmektedir. Bir firma için mevcut müşterinin elde tutulmasına odaklanmak, yeni müşteri kazanmaktan daha maliyetli olmaktadır. Bir müşterinin kaybedilmemesi için en önemli unsurlardan birisi müşteri ilişkileri yönetiminin bir alt dalı olan müşteri şikâyetlerinin iyi bir şekilde yönetilmesinden geçmektedir. Teknolojide meydana gelen gelişmeler doğrultusunda, birçok alanda olduğu gibi müşteri şikâyeti yönetiminde de teknolojiden sıklıkla faydalanılmaktadır ancak bu durum henüz istenilen seviyelere ulaşmamıştır. Bu çalışmada müşteri şikâyeti yönetimi alanına katkı sağlamak için derin öğrenmeden faydalanan özgün modeller geliştirilmiştir. Bu kapsamda, evrişimsel sinir ağı katmanı kullanılarak müşteri yorumlarının hangi şikâyet türünü ilgilendirdiğini tahmin eden bir model geliştirilmiştir. Finans alanındaki bir veri seti kullanılarak analiz edilen modelin hiper-parametreleri Bayesian optimizasyon yöntemi kullanılarak optimize edilmiştir. Farklı derinliklerde geliştirilen modellerle %85.83’lere ulaşan doğruluk oranı elde edilmiştir. Literatürde benzer veri seti ile yapılan çalışmalar incelendiğinde önerilen modelin, diğer çalışmalara göre üstün olduğu gözlemlenmiştir.

Suggested Citation

  • Murat Fatih Tuna & Yasin Görmez, 2024. "Evrişimsel Sinir Ağları Tabanlı Derin Öğrenme Yöntemiyle Müşteri Şikayetlerinin Sınıflandırılması," Bingol University Journal of Economics and Administrative Sciences, Bingol University, Faculty of Economics and Administrative Sciences, vol. 8(1), pages 31-46, June.
  • Handle: RePEc:bgo:journl:v:8:y:2024:i:1:p:31-46
    DOI: https://doi.org/10.33399/biibfad.1362160
    as

    Download full text from publisher

    File URL: http://repec.bingol.edu.tr/bgo/Evrisimsel-Sinir-Aglari-Tabanli-Derin-Ogrenme-Yontemiyle-Musteri-Sikayetlerinin-Siniflandirilmasi.pdf
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.33399/biibfad.1362160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Müşteri şikâyet yönetimi; derin öğrenme; evrişimsel sinir ağları; tüketici davranışları;
    All these keywords.

    JEL classification:

    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bgo:journl:v:8:y:2024:i:1:p:31-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Halim Tatli (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.