IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v9y1991i1p63-71.html
   My bibliography  Save this article

Asymptotic Distributions of Unit-Root Tests When the Process Is Nearly Stationary

Author

Listed:
  • Pantula, Sastry G

Abstract

Several test criteria are available for testing the hypothesis that the autoregressive polynomial of an autoregressive moving average process has a single unit root. Schwert (1989), using a Monte Carlo study, investigated the performance of some of the available test criteria. He concluded that the actual levels of the test criteria considered in his study are far from the specified levels when the moving average polynomial also has a root close to 1. This article studies the asymptotic null distribution of the test statistics for testing "rho" = 1 in the model Y(" subscript" t) = "rho" Y("subscript" t-1) + e(" subscript" t) - "theta"e(" subscript" t-1) as "theta" approaches 1. It is shown that the test statistics differ from one another in their asymptotic properties depending on the rate at which "theta" converges to 1.

Suggested Citation

  • Pantula, Sastry G, 1991. "Asymptotic Distributions of Unit-Root Tests When the Process Is Nearly Stationary," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 63-71, January.
  • Handle: RePEc:bes:jnlbes:v:9:y:1991:i:1:p:63-71
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:9:y:1991:i:1:p:63-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.