IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v22y2004i1p121-25.html
   My bibliography  Save this article

An Empirical Bayes Procedure for Improving Individual-Level Estimates and Predictions from Finite Mixtures of Multinomial Logit Models

Author

Listed:
  • Kamakura, Wagner A
  • Wedel, Michel

Abstract

Unobserved heterogeneity in random utility choice models can be dealt with by specifying either a multinomial or a normal distribution of the coefficients, leading to finite mixture logit and mixed logit models. Focusing on the former, we show that individual-level estimates and predictions of finite mixtures estimated by maximizing the likelihood function can be improved through integration over the estimation error of the hyperparameters, using an empirical Bayes approach. We investigate the conjecture that this approach is more robust against departures of the underlying assumptions of the finite mixture model in two Monte Carlo studies. We show that our approach improves the performance of the finite mixture model in representing individual-level parameters and producing hold-out forecasts. We illustrate with two examples that our approach may offer advantages in empirical applications involving the analysis of heterogeneous choice data.

Suggested Citation

  • Kamakura, Wagner A & Wedel, Michel, 2004. "An Empirical Bayes Procedure for Improving Individual-Level Estimates and Predictions from Finite Mixtures of Multinomial Logit Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 121-125, January.
  • Handle: RePEc:bes:jnlbes:v:22:y:2004:i:1:p:121-25
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rocchi, L. & Campioni, R. & Brunori, A. & Mariano, E., 2023. "Environmental certification of woody charcoal: A choice experiments application," Forest Policy and Economics, Elsevier, vol. 154(C).
    2. Balcombe, Kelvin & Chalak, Ali & Fraser, Iain, 2009. "Model selection for the mixed logit with Bayesian estimation," Journal of Environmental Economics and Management, Elsevier, vol. 57(2), pages 226-237, March.
    3. Renato Assunção & Carl Schmertmann & Joseph Potter & Suzana Cavenaghi, 2005. "Empirical bayes estimation of demographic schedules for small areas," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 537-558, August.
    4. Riccardo Scarpa & Mara Thiene, 2005. "Destination Choice Models for Rock Climbing in the Northeastern Alps: A Latent-Class Approach Based on Intensity of Preferences," Land Economics, University of Wisconsin Press, vol. 81(3).
    5. Woo, Chi-Keung & Horowitz, Ira & Olson, Arne & Horii, Brian & Baskette, Carmen, 2006. "Efficient frontiers for electricity procurement by an LDC with multiple purchase options," Omega, Elsevier, vol. 34(1), pages 70-80, January.
    6. Floh, Arne & Zauner, Alexander & Koller, Monika & Rusch, Thomas, 2014. "Customer segmentation using unobserved heterogeneity in the perceived-value–loyalty–intentions link," Journal of Business Research, Elsevier, vol. 67(5), pages 974-982.
    7. Wiktor Adamowicz & David Bunch & Trudy Cameron & Benedict Dellaert & Michael Hanneman & Michael Keane & Jordan Louviere & Robert Meyer & Thomas Steenburgh & Joffre Swait, 2008. "Behavioral frontiers in choice modeling," Marketing Letters, Springer, vol. 19(3), pages 215-228, December.
    8. Quynh, Chi Nguyen Thi & Schilizzi, Steven & Hailu, Atakelty & Iftekhar, Sayed, 2018. "Fishers' Preference Heterogeneity and Trade-offs Between Design Options for More Effective Monitoring of Fisheries," Ecological Economics, Elsevier, vol. 151(C), pages 22-33.
    9. Hilger, James & Hanemann, Michael, 2006. "Heterogeneous Preferences for Water Quality: A Finite Mixture Model of Beach Recreation in Southern California," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt0565c0b2, Department of Agricultural & Resource Economics, UC Berkeley.
    10. Novikova, Anastasija & Rocchi, Lucia & Vitunskienė, Vlada, 2017. "Assessing the benefit of the agroecosystem services: Lithuanian preferences using a latent class approach," Land Use Policy, Elsevier, vol. 68(C), pages 277-286.
    11. Bettina Grün & Friedrich Leisch, 2008. "Identifiability of Finite Mixtures of Multinomial Logit Models with Varying and Fixed Effects," Journal of Classification, Springer;The Classification Society, vol. 25(2), pages 225-247, November.
    12. Masiero, Mauro & Franceschinis, Cristiano & Mattea, Stefania & Thiene, Mara & Pettenella, Davide & Scarpa, Riccardo, 2018. "Ecosystem services’ values and improved revenue collection for regional protected areas," Ecosystem Services, Elsevier, vol. 34(PA), pages 136-153.
    13. Mara Thiene & Riccardo Scarpa & Jordan Louviere, 2015. "Addressing Preference Heterogeneity, Multiple Scales and Attribute Attendance with a Correlated Finite Mixing Model of Tap Water Choice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 637-656, November.
    14. Thiene, Mara & Meyerhoff, Jürgen & De Salvo, Maria, 2012. "Scale and taste heterogeneity for forest biodiversity: Models of serial nonparticipation and their effects," Journal of Forest Economics, Elsevier, vol. 18(4), pages 355-369.
    15. Pettenella, Davide & Thiene, Mara & Scarpa, Riccardo & Masiero, Mauro & Mattea, Stefania & Franceschinis, Cristiano, 2016. "First economic assessment of ecosystem services from Natura 2000 network in Lombardy (Northern Italy)," 2016 Fifth AIEAA Congress, June 16-17, 2016, Bologna, Italy 242326, Italian Association of Agricultural and Applied Economics (AIEAA).
    16. Yanhong H. Jin & James W. Mjelde & Kerry K. Litzenberg, 2014. "Economic analysis of job-related attributes in undergraduate students' initial job selection," Education Economics, Taylor & Francis Journals, vol. 22(3), pages 305-327, June.
    17. Lucia Rocchi & Anastasija Novikova & Bernardas Vaznonis, 2022. "Assessing Consumer Preferences and Willingness to Pay for Agricultural Landscape Attributes in Lithuania," Land, MDPI, vol. 11(10), pages 1-15, September.
    18. William Greene, 2003. "A Interpreting Estimated Parameters and Measuring Individual Heterogeneity in Random Coefficient Models," Working Papers 03-19, New York University, Leonard N. Stern School of Business, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:22:y:2004:i:1:p:121-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.