IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v21y2003i1p156-63.html
   My bibliography  Save this article

Robust Stationarity Tests in Seasonal Time Series Processes

Author

Listed:
  • Taylor, A M Robert

Abstract

This article builds on the existing literature on (stationarity) tests of the null hypothesis of deterministic seasonality in a univariate time series process against the alternative of unit root behavior at some or all of the zero and seasonal frequencies. This article considers the case where, in testing for unit roots at some proper subset of the zero and seasonal frequencies, there are unattended unit roots among the remaining frequencies. Monte Carlo results are presented that demonstrate that in this case, the stationarity tests tend to distort below nominal size under the null and display an associated (often very large) loss of power under the alternative. A modification to the existing tests, based on data prefiltering, that eliminates the problem asymptotically is suggested. Monte Carlo evidence suggests that this procedure works well in practice, even at relatively small sample sizes. Applications of the robustified statistics to various seasonally unadjusted time series measures of U.K. consumers' expenditure are considered; these yield considerably more evidence of seasonal unit roots than do the existing stationarity tests.

Suggested Citation

  • Taylor, A M Robert, 2003. "Robust Stationarity Tests in Seasonal Time Series Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 156-163, January.
  • Handle: RePEc:bes:jnlbes:v:21:y:2003:i:1:p:156-63
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ikerne Valle & Kepa Astorkiza & Ignacio Díaz-Emparanza, 2017. "Measuring species concentration, diversification and dependency in a macro-fishery," Empirical Economics, Springer, vol. 52(4), pages 1689-1713, June.
    2. Castro, Tomás del Barrio & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2013. "The Impact Of Persistent Cycles On Zero Frequency Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1289-1313, December.
    3. Anton Skrobotov, 2013. "On GLS-detrending for deterministic seasonality testing," Working Papers 0073, Gaidar Institute for Economic Policy, revised 2014.
    4. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Inflation fan charts, monetary policy and skew normal distribution," Discussion Papers in Economics 13/06, Division of Economics, School of Business, University of Leicester.
    5. Busetti, Fabio & Taylor, A. M. Robert, 2003. "Testing against stochastic trend and seasonality in the presence of unattended breaks and unit roots," Journal of Econometrics, Elsevier, vol. 117(1), pages 21-53, November.
    6. Fabio Busetti, 2006. "Tests of seasonal integration and cointegration in multivariate unobserved component models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 419-438, May.
    7. Gabriel Pons, 2006. "Testing Monthly Seasonal Unit Roots With Monthly and Quarterly Information," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 191-209, March.
    8. del Barrio Castro Tomás & Osborn Denise R, 2011. "Nonparametric Tests for Periodic Integration," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-35, February.
    9. Taylor, A. M. Robert, 2005. "Variance ratio tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 124(1), pages 33-54, January.
    10. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Too many skew normal distributions? The practitioner’s perspective," Discussion Papers in Economics 13/07, Division of Economics, School of Business, University of Leicester.
    11. Fok, D. & Franses, Ph.H.B.F. & Paap, R., 2005. "Performance of Seasonal Adjustment Procedures: Simulation and Empirical Results," Econometric Institute Research Papers EI 2005-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Gabriel Pons Rotger, 2004. "Seasonal Unit Root Testing Based on the Temporal Aggregation of Seasonal Cycles," Economics Working Papers 2004-1, Department of Economics and Business Economics, Aarhus University.
    13. Tomás Del Barrio Castro & Paulo M. M. Rodrigues & A. M. Robert Taylor, 2015. "On the Behaviour of Phillips–Perron Tests in the Presence of Persistent Cycles," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(4), pages 495-511, August.
    14. Haque, M. Ohidul & Haque, Tariq H., 2018. "Evaluating the effects of the road safety system approach in Brunei," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 594-607.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:21:y:2003:i:1:p:156-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.