IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v99y2004p591-600.html
   My bibliography  Save this article

Relative Risk Forests for Exercise Heart Rate Recovery as a Predictor of Mortality

Author

Listed:
  • Hemant Ishwaran
  • Eugene H. Blackstone
  • Claire E. Pothier
  • Michael S. Lauer

Abstract

No abstract is available for this item.

Suggested Citation

  • Hemant Ishwaran & Eugene H. Blackstone & Claire E. Pothier & Michael S. Lauer, 2004. "Relative Risk Forests for Exercise Heart Rate Recovery as a Predictor of Mortality," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 591-600, January.
  • Handle: RePEc:bes:jnlasa:v:99:y:2004:p:591-600
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2004/00000099/00000467/art00006
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Ballings & D. Van Den Poel & E. Verhagen, 2013. "Evaluating the Added Value of Pictorial Data for Customer Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/869, Ghent University, Faculty of Economics and Business Administration.
    2. B. Larivière & D. Van Den Poel, 2004. "Predicting Customer Retention and Profitability by Using Random Forests and Regression Forests Techniques," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/282, Ghent University, Faculty of Economics and Business Administration.
    3. Ballings, Michel & Van den Poel, Dirk & Bogaert, Matthias, 2016. "Social media optimization: Identifying an optimal strategy for increasing network size on Facebook," Omega, Elsevier, vol. 59(PA), pages 15-25.
    4. Zhengnan Huang & Hongjiu Zhang & Jonathan Boss & Stephen A Goutman & Bhramar Mukherjee & Ivo D Dinov & Yuanfang Guan & for the Pooled Resource Open-Access ALS Clinical Trials Consortium, 2017. "Complete hazard ranking to analyze right-censored data: An ALS survival study," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-21, December.
    5. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:99:y:2004:p:591-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.