IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v98y2003p796-806.html
   My bibliography  Save this article

Infilling Sparse Records of Spatial Fields

Author

Listed:
  • Johns C.J.
  • Nychka D.
  • Kittel T.G.F.
  • Daly C.

Abstract

No abstract is available for this item.

Suggested Citation

  • Johns C.J. & Nychka D. & Kittel T.G.F. & Daly C., 2003. "Infilling Sparse Records of Spatial Fields," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 796-806, January.
  • Handle: RePEc:bes:jnlasa:v:98:y:2003:p:796-806
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2003/00000098/00000464/art00003
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samira Zahmatkesh & Mohsen Mohammadzadeh, 2021. "Bayesian prediction of spatial data with non-ignorable missingness," Statistical Papers, Springer, vol. 62(5), pages 2247-2268, October.
    2. Toshihiro Hirano & Yoshihiro Yajima, 2013. "Covariance tapering for prediction of large spatial data sets in transformed random fields," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 913-939, October.
    3. Ganggang Xu & Marc G. Genton, 2017. "Tukey -and- Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1236-1249, July.
    4. Waley W. J. Liang & Herbert K. H. Lee, 2019. "Bayesian nonstationary Gaussian process models via treed process convolutions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 797-818, September.
    5. Karl Pazdernik & Ranjan Maitra & Douglas Nychka & Stephan Sain, 2018. "Reduced Basis Kriging for Big Spatial Fields," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 280-300, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:98:y:2003:p:796-806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.