IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v104i485y2009p299-312.html
   My bibliography  Save this article

Consistent Classification of Nonstationary Time Series Using Stochastic Wavelet Representations

Author

Listed:
  • Fryzlewicz, Piotr
  • Ombao, Hernando

Abstract

No abstract is available for this item.

Suggested Citation

  • Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent Classification of Nonstationary Time Series Using Stochastic Wavelet Representations," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 299-312.
  • Handle: RePEc:bes:jnlasa:v:104:i:485:y:2009:p:299-312
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jasa.2009.0110
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossein Hassani & Mohammad Reza Yeganegi & Emmanuel Sirimal Silva, 2018. "A New Signal Processing Approach for Discrimination of EEG Recordings," Stats, MDPI, vol. 1(1), pages 1-14, November.
    2. Embleton, Jonathan & Knight, Marina I. & Ombao, Hernando, 2022. "Wavelet testing for a replicate-effect within an ordered multiple-trial experiment," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    3. Ruprecht Puchstein & Philip Preuß, 2016. "Testing for Stationarity in Multivariate Locally Stationary Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 3-29, January.
    4. Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.
    5. Wang, Jiangyan & Cao, Guanqun & Wang, Li & Yang, Lijian, 2020. "Simultaneous confidence band for stationary covariance function of dense functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    6. Minji Kim & Hee-Seok Oh & Yaeji Lim, 2023. "Zero-Inflated Time Series Clustering Via Ensemble Thick-Pen Transform," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 407-431, July.
    7. Aykroyd, Robert G. & Barber, Stuart & Miller, Luke R., 2016. "Classification of multiple time signals using localized frequency characteristics applied to industrial process monitoring," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 351-362.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:104:i:485:y:2009:p:299-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.