IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v103y2008mmarchp280-287.html
   My bibliography  Save this article

Using SIMEX for Smoothing-Parameter Choice in Errors-in-Variables Problems

Author

Listed:
  • Delaigle, Aurore
  • Hall, Peter

Abstract

No abstract is available for this item.

Suggested Citation

  • Delaigle, Aurore & Hall, Peter, 2008. "Using SIMEX for Smoothing-Parameter Choice in Errors-in-Variables Problems," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 280-287, March.
  • Handle: RePEc:bes:jnlasa:v:103:y:2008:m:march:p:280-287
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2008/00000103/00000481/art00032
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samiran Sinha & Bani K. Mallick & Victor Kipnis & Raymond J. Carroll, 2010. "Semiparametric Bayesian Analysis of Nutritional Epidemiology Data in the Presence of Measurement Error," Biometrics, The International Biometric Society, vol. 66(2), pages 444-454, June.
    2. Aurore Delaigle & Peter Hall, 2016. "Methodology for non-parametric deconvolution when the error distribution is unknown," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 231-252, January.
    3. Hao Dong & Taisuke Otsu & Luke Taylor, 2023. "Bandwidth selection for nonparametric regression with errors-in-variables," Econometric Reviews, Taylor & Francis Journals, vol. 42(4), pages 393-419, April.
    4. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    5. Hao Dong & Taisuke Otsu, 2018. "Nonparametric Estimation of Additive Model with Errors-in-Variables," STICERD - Econometrics Paper Series 600, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. Julie McIntyre & Brent A. Johnson & Stephen M. Rappaport, 2018. "Monte Carlo methods for nonparametric regression with heteroscedastic measurement error," Biometrics, The International Biometric Society, vol. 74(2), pages 498-505, June.
    7. Julie McIntyre & Leonard Stefanski, 2011. "Density Estimation with Replicate Heteroscedastic Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 81-99, February.
    8. Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
    9. Xianzheng Huang & Haiming Zhou, 2017. "An alternative local polynomial estimator for the error-in-variables problem," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 301-325, April.
    10. Goldstein Harvey & Shlomo Natalie, 2020. "A Probabilistic Procedure for Anonymisation, for Assessing the Risk of Re-identification and for the Analysis of Perturbed Data Sets," Journal of Official Statistics, Sciendo, vol. 36(1), pages 89-115, March.
    11. Karun Adusumilli & Taisuke Otsu, 2015. "Nonparametric instrumental regression with errors in variables," STICERD - Econometrics Paper Series /2015/585, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Hao Dong & Taisuke Otsu & Luke Taylor, 2022. "Nonparametric estimation of additive models with errors-in-variables," Econometric Reviews, Taylor & Francis Journals, vol. 41(10), pages 1164-1204, November.
    13. Huixia Judy Wang & Leonard A. Stefanski & Zhongyi Zhu, 2012. "Corrected-loss estimation for quantile regression with covariate measurement errors," Biometrika, Biometrika Trust, vol. 99(2), pages 405-421.
    14. Cornelis J. Potgieter, 2020. "Density deconvolution for generalized skew-symmetric distributions," Journal of Statistical Distributions and Applications, Springer, vol. 7(1), pages 1-20, December.
    15. Yiping Yang & Tiejun Tong & Gaorong Li, 2019. "SIMEX estimation for single-index model with covariate measurement error," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 137-161, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:103:y:2008:m:march:p:280-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.