IDEAS home Printed from https://ideas.repec.org/a/bes/amstat/v60y2006mfebruaryp19-26.html
   My bibliography  Save this article

Selecting the Best Linear Mixed Model Under REML

Author

Listed:
  • Gurka, Matthew J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Gurka, Matthew J., 2006. "Selecting the Best Linear Mixed Model Under REML," The American Statistician, American Statistical Association, vol. 60, pages 19-26, February.
  • Handle: RePEc:bes:amstat:v:60:y:2006:m:february:p:19-26
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/tas/2006/00000060/00000001/art00004
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haitao Zheng & Jie Hu & Rong Guan & Shanshan Wang, 2016. "Examining Determinants of CO 2 Emissions in 73 Cities in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    2. Tang, Niansheng & Wu, Ying & Chen, Dan, 2018. "Semiparametric Bayesian analysis of transformation linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 225-240.
    3. Giulia Fuochi & Alberto Voci, 2021. "Dealing with the Ups and Downs of Life: Positive Dispositions in Coping with Negative and Positive Events and Their Relationships with Well-Being Indicators," Journal of Happiness Studies, Springer, vol. 22(6), pages 2435-2456, August.
    4. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    5. Dimova, Rositsa B. & Markatou, Marianthi & Talal, Andrew H., 2011. "Information methods for model selection in linear mixed effects models with application to HCV data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2677-2697, September.
    6. Gurka, Matthew J. & Edwards, Lloyd J. & Nylander-French, Leena, 2007. "Testing transformations for the linear mixed model," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4297-4307, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:amstat:v:60:y:2006:m:february:p:19-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/tas/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.