IDEAS home Printed from https://ideas.repec.org/a/bas/econth/y2018i3p113-134.html
   My bibliography  Save this article

Traditional or behavioral finance?

Author

Listed:
  • Bozhidar Nedev

Abstract

The main differences between the neoclassical financial theory and behavioural finance are presented. They include the concept of rational economic agents, the notion of objective probability, the capital asset pricing models, the portfolio theory and the efficient market hypothesis. The theory of expected utility and the prospect theory are the most distinguished scientific achievements in conventional and behavioural finance respectively. The theoretical assumptions and the practical implementations, on which they are built, are summarized. The psychological effects, determining the decision making process of economic agents in uncertainty, are alleged and compared to the notions of the normative theory. The two different viewpoints of the two opposing fields in finance are presented with regard to the financial markets and instruments, the decisions made by investors and the portfolios constructed by them.

Suggested Citation

  • Bozhidar Nedev, 2018. "Traditional or behavioral finance?," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 3, pages 113-134.
  • Handle: RePEc:bas:econth:y:2018:i:3:p:113-134
    as

    Download full text from publisher

    File URL: https://etj.iki.bas.bg/storage/app/uploads/public/629/f60/c4d/629f60c4d5df2309522133.pdf
    Download Restriction: Fee access (Bulgarian)
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lakonishok, Josef & Shleifer, Andrei & Vishny, Robert W, 1994. "Contrarian Investment, Extrapolation, and Risk," Journal of Finance, American Finance Association, vol. 49(5), pages 1541-1578, December.
    2. Shleifer, Andrei & Summers, Lawrence H, 1990. "The Noise Trader Approach to Finance," Journal of Economic Perspectives, American Economic Association, vol. 4(2), pages 19-33, Spring.
    3. Matthew Rabin, 2000. "Risk Aversion and Expected-Utility Theory: A Calibration Theorem," Econometrica, Econometric Society, vol. 68(5), pages 1281-1292, September.
    4. Shefrin, Hersh, 2008. "A Behavioral Approach to Asset Pricing," Elsevier Monographs, Elsevier, edition 2, number 9780123743565.
    5. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    6. Grether, David M & Plott, Charles R, 1979. "Economic Theory of Choice and the Preference Reversal Phenomenon," American Economic Review, American Economic Association, vol. 69(4), pages 623-638, September.
    7. Adam Szyszka, 2013. "Behavioral Finance and Capital Markets," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-137-36629-0, December.
    8. Shefrin, Hersh & Statman, Meir, 2000. "Behavioral Portfolio Theory," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(2), pages 127-151, June.
    9. Fama, Eugene F & French, Kenneth R, 1996. "Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
    10. Nagel, Stefan, 2005. "Short sales, institutional investors and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 78(2), pages 277-309, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivanka Mihaylova, 2022. "Workplace Conflict: Evidence from Bulgaria," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 2, pages 115-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montone, Maurizio, 2023. "Beta, value, and growth: Do dichotomous risk-preferences explain stock returns?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    2. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, February.
    3. David Hirshleife, 2015. "Behavioral Finance," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 133-159, December.
    4. Stracca, Livio, 2004. "Behavioral finance and asset prices: Where do we stand?," Journal of Economic Psychology, Elsevier, vol. 25(3), pages 373-405, June.
    5. Muhammad Kashif & Thomas Leirvik, 2022. "The MAX Effect in an Oil Exporting Country: The Case of Norway," JRFM, MDPI, vol. 15(4), pages 1-16, March.
    6. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    7. Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer, 2013. "Salience and Consumer Choice," Journal of Political Economy, University of Chicago Press, vol. 121(5), pages 803-843.
    8. Stefan Nagel, 2013. "Empirical Cross-Sectional Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 5(1), pages 167-199, November.
    9. Ye, Qing & Wu, Yuliang & Liu, Jia, 2019. "Institutional preferences, demand shocks and the distress anomaly," The British Accounting Review, Elsevier, vol. 51(1), pages 72-91.
    10. K. Cuthbertson & D. Nitzsche & S. Hyde, 2007. "Monetary Policy And Behavioural Finance," Journal of Economic Surveys, Wiley Blackwell, vol. 21(5), pages 935-969, December.
    11. Ramiah, Vikash & Xu, Xiaoming & Moosa, Imad A., 2015. "Neoclassical finance, behavioral finance and noise traders: A review and assessment of the literature," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 89-100.
    12. Juhani T. Linnainmaa & Michael R. Roberts, 2016. "The History of the Cross Section of Stock Returns," NBER Working Papers 22894, National Bureau of Economic Research, Inc.
    13. Marie-Hélène Broihanne & Maxime Merli & Patrick Roger, 2016. "Diversification, gambling and market forces," Review of Quantitative Finance and Accounting, Springer, vol. 47(1), pages 129-157, July.
    14. Black, Angela J. & McMillan, David G., 2006. "Asymmetric risk premium in value and growth stocks," International Review of Financial Analysis, Elsevier, vol. 15(3), pages 237-246.
    15. Patrick Roger & Marie-Hélène Broihanne & Maxime Merli, 2012. "In search of positive skewness: the case of individual investors," Working Papers of LaRGE Research Center 2012-04, Laboratoire de Recherche en Gestion et Economie (LaRGE), Université de Strasbourg.
    16. Qianwei Ying & Tahir Yousaf & Qurat ul Ain & Yasmeen Akhtar & Muhammad Shahid Rasheed, 2019. "Stock Investment and Excess Returns: A Critical Review in the Light of the Efficient Market Hypothesis," JRFM, MDPI, vol. 12(2), pages 1-22, June.
    17. Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer, 2012. "Salience Theory of Choice Under Risk," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(3), pages 1243-1285.
    18. David Hirshleifer, 2001. "Investor Psychology and Asset Pricing," Journal of Finance, American Finance Association, vol. 56(4), pages 1533-1597, August.
    19. Zhuo Chen & Russell Golman & Jason Somerville, 2024. "Menu-dependent risk attitudes: Theory and evidence," Journal of Risk and Uncertainty, Springer, vol. 68(1), pages 77-105, February.
    20. Fang, Yi & Niu, Hui & Lin, Yuen, 2023. "Ex-ante Valuation based on Prospect Theory," MPRA Paper 116386, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • D91 - Microeconomics - - Micro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G40 - Financial Economics - - Behavioral Finance - - - General
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bas:econth:y:2018:i:3:p:113-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Diana Dimitrova (email available below). General contact details of provider: https://edirc.repec.org/data/ikbasbg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.