IDEAS home Printed from https://ideas.repec.org/a/baq/taprar/v2y2024i1p51-56.html
   My bibliography  Save this article

Analysis of the energy efficiency of a system with a hybrid solar collector and thermal energy storage

Author

Listed:
  • Stepan Mysak

    (Lviv Polytechnic National University)

  • Stepan Shapoval

    (Lviv Polytechnic National University)

Abstract

The object of research is heat transfer in a hybrid thermal photovoltaic solar collector.International agreements and strategies aimed at combating climate change and reducing greenhouse gas emissions strongly call for the active implementation of renewable energy sources on a global scale. A special emphasis is placed on the development of solar energy, which has significant growth potential due to the constant improvement of technologies and cost reduction of production. With this in mind, the authors focused on the development and analysis of a computer model of an innovative hybrid system that effectively combines a solar collector for the simultaneous production of both thermal and electrical energy.The research included a detailed study of the temperature changes of the heat carrier in the hybrid photovoltaic solar collector and thermal accumulator during the period of solar irradiation. Thanks to careful monitoring, the main patterns of gradual temperature increase in both key components of the hybrid system were established. In addition, an assessment of the dynamics of changes in the instantaneous thermal power of the solar collector under the influence of various factors, such as the intensity of solar radiation, the angle of inclination of the collector, wind speed, etc., was carried out.The results of computer modeling showed the average indicator of the efficiency of the entire hybrid system, as well as its variations during a certain time of operation. In addition, the change in the instantaneous specific heat capacity and the overall efficiency of heat energy generation by the hybrid photovoltaic solar collector were analyzed. Special attention was paid to the study of the dynamics of changes in the thermal efficiency of the entire system, as well as its ability to efficiently store thermal energy in a specialized battery.The comprehensive analysis made it possible to obtain the key thermophysical parameters of the developed hybrid system with a photovoltaic solar collector. This data is extremely important, as it will allow engineers and scientists to accurately calculate the potential performance and efficiency of such a system when it is put into practical use in the future. In general, the results of the study emphasize the promising development of hybrid solar collectors as one of the leading technologies in the field of renewable energy in the context of global challenges of climate change.

Suggested Citation

  • Stepan Mysak & Stepan Shapoval, 2024. "Analysis of the energy efficiency of a system with a hybrid solar collector and thermal energy storage," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 2(1(76)), pages 51-56, April.
  • Handle: RePEc:baq:taprar:v:2:y:2024:i:1:p:51-56
    DOI: 10.15587/2706-5448.2024.301779
    as

    Download full text from publisher

    File URL: https://journals.uran.ua/tarp/article/download/301779/294075
    Download Restriction: no

    File URL: https://libkey.io/10.15587/2706-5448.2024.301779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Govindasamy, Dhanusiya & Kumar, Ashwani, 2023. "Experimental analysis of solar panel efficiency improvement with composite phase change materials," Renewable Energy, Elsevier, vol. 212(C), pages 175-184.
    2. Małgorzata Stec & Mariola Grzebyk, 2022. "Statistical Analysis of the Level of Development of Renewable Energy Sources in the Countries of the European Union," Energies, MDPI, vol. 15(21), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Zbroński & Henryk Otwinowski & Aleksandra Górecka-Zbrońska & Dariusz Urbaniak & Tomasz Wyleciał, 2023. "Analysis of Changes in Electricity Generation from Renewable Energy Sources after Poland’s Accession to Structures of the European Union," Energies, MDPI, vol. 16(12), pages 1-16, June.
    2. Norbert Bozsik & András Szeberényi & Nándor Bozsik, 2023. "Examination of the Hungarian Electricity Industry Structure with Special Regard to Renewables," Energies, MDPI, vol. 16(9), pages 1-23, April.
    3. Mariola Kędra, 2023. "Cooling Water for Electricity Production in Poland: Assessment and New Perspectives," Energies, MDPI, vol. 16(6), pages 1-18, March.
    4. Anna Marciniuk-Kluska & Mariusz Kluska, 2023. "Forecasting Energy Recovery from Municipal Waste in a Closed-Loop Economy," Energies, MDPI, vol. 16(6), pages 1-15, March.
    5. Govindasamy, Dhanusiya & Daniel, Freedon & Kumar, Ashwani, 2024. "Performance enhancement of photovoltaic system using composite phase change materials," Energy, Elsevier, vol. 288(C).
    6. László Török, 2023. "Effects of Energy Economic Variables on the Economic Growth of the European Union (2010–2019)," Energies, MDPI, vol. 16(16), pages 1-17, August.
    7. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2023. "The Environmental Impact of Changes in the Structure of Electricity Sources in Europe," Energies, MDPI, vol. 16(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:baq:taprar:v:2:y:2024:i:1:p:51-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iryna Prudius (email available below). General contact details of provider: https://journals.uran.ua/tarp/issue/archive .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.