IDEAS home Printed from https://ideas.repec.org/a/baq/taprar/v2y2023i3p14-17.html
   My bibliography  Save this article

Analysis of the activated sludge composition using artificial neural networks

Author

Listed:
  • Olga Sanginova

    (Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»)

Abstract

The object of research is electron microscopic images of activated sludge, which were used to train a convolutional neural network. An important task of the process of biological wastewater treatment is the prompt determination of quantitative and qualitative changes in activated sludge, as well as the assessment of the impact of the identified changes on the efficiency of the treatment. Microscopic examination, which is a traditional tool for controlling the quality of the water-sludge mixture, does not allow to quickly detect the deterioration of the activated sludge, which can lead to its degradation, and in difficult cases – to the death of the sludge. Violation of the microbiological composition of sludge leads to improper formation of flocs, violation of the process of formation of flakes, filamentous or sludge swelling, toxicity, etc. The combination of artificial intelligence methods with existing methods of quality control of activated sludge will increase the reliability and validity of the assessment of the quality of biological treatment.A proposed methodology for analyzing the state of activated sludge using convolutional neural networks. For the purpose of training the network, images of activated sludge were prepared, which were classified into two categories – «flocs» and «bacteria with microorganisms». There are 4 subcategories in the «flocks» category: size, shape, structure, edge of the floc; in the category «bacteria with microorganisms» there are 2 subcategories: «individual bacteria and microorganisms» and «colonies». Data sets of 250, 500 and 1000 images were created for each category. The task of learning the image processing model and the criteria for evaluating the success of learning are formulated. The task of training the network was to find such a recognition function that, with a given degree of accuracy, approximates the unknown recognition function over the entire domain of its definition. The accuracy of image recognition is chosen as a learning success criterion. The model training results show that the image recognition accuracy reaches 99.98 %, and the training quality is affected by the sample size and training duration. The trained model can be used as a fast and efficient tool to detect problems with activated sludge.

Suggested Citation

  • Olga Sanginova, 2023. "Analysis of the activated sludge composition using artificial neural networks," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 2(3(70)), pages 14-17, April.
  • Handle: RePEc:baq:taprar:v:2:y:2023:i:3:p:14-17
    DOI: 10.15587/2706-5448.2023.277184
    as

    Download full text from publisher

    File URL: https://journals.uran.ua/tarp/article/download/277184/273198
    Download Restriction: no

    File URL: https://libkey.io/10.15587/2706-5448.2023.277184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:baq:taprar:v:2:y:2023:i:3:p:14-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iryna Prudius (email available below). General contact details of provider: https://journals.uran.ua/tarp/issue/archive .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.