IDEAS home Printed from https://ideas.repec.org/a/ath/journl/v56y2019i4p98-107.html
   My bibliography  Save this article

Contributions To Modeling The Behavior Of Chaotic Systems With Applicability In Economic Systems

Author

Listed:
  • Catalin DUMITRESCU

    (Athenaeum University, Bucharest, Romania)

Abstract

The surrounding reality can be viewed as the result of the interaction of dynamic systems nonlinear complexes. It has been shown, however, that some very simple systems can have it complicated and seemingly random behaviors. The chaos theory aims to explain and to predict in a short time the seemingly random and unpredictable behavior of the systems Nonlinear. Although the ideas preceding the emergence of chaos theory had been around for a long time, they were crystallized for the first by Lorenz (1963) in the work Deterministic Nonperiodic Flow. Lorenz created a mathematical model of the circulation of atmospheric currents of convection and observed that when there is a slight difference between the initial conditions, completely different results are obtained thus rediscovering the phenomenon of sensitivity to the variation of the initial conditions. The phenomenon observed has become a very popular paradigm of chaos theory called the „butterfly effect†and states that if the flapping of the wings of a butterfly changes the weather conditions in the jungle in a minor way Amazonian, this fact can have the effect, at the end of a complex causal chain, of the appearance of a tornadoes in Texas.

Suggested Citation

  • Catalin DUMITRESCU, 2019. "Contributions To Modeling The Behavior Of Chaotic Systems With Applicability In Economic Systems," Internal Auditing and Risk Management, Athenaeum University of Bucharest, vol. 56(4), pages 98-107, December.
  • Handle: RePEc:ath:journl:v:56:y:2019:i:4:p:98-107
    as

    Download full text from publisher

    File URL: http://aimr.univath.ro/download/1201_008CD.pdf
    Download Restriction: no

    File URL: http://aimr.univath.ro/en/article/CONTRIBUTIONS-TO-MODELING-THE-BEHAVIOR-OF-CHAOTIC-SYSTEMS-WITH-APPLICABILITY-IN-ECONOMIC-SYSTEMS~1201.html
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Donner & J. Heitzig & J. Donges & Y. Zou & N. Marwan & J. Kurths, 2011. "The geometry of chaotic dynamics — a complex network perspective," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 84(4), pages 653-672, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vega, I. & Schütte, Ch. & Conrad, T.O.F., 2016. "Finding metastable states in real-world time series with recurrence networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 1-17.
    2. Chen, Yuan & Lin, Aijing, 2022. "Order pattern recurrence for the analysis of complex systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Zhou, Yuan-Wu & Liu, Jin-Long & Yu, Zu-Guo & Zhao, Zhi-Qin & Anh, Vo, 2014. "Fractal and complex network analyses of protein molecular dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 21-32.
    4. Mutua Stephen & Changgui Gu & Huijie Yang, 2015. "Visibility Graph Based Time Series Analysis," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
    5. Wang, Minggang & Tian, Lixin, 2016. "From time series to complex networks: The phase space coarse graining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 456-468.

    More about this item

    Keywords

    chaos theory; nonlinear dynamics; nonlinear time series analysis; chaos identification; Lyapunov exponent; neural networks prediction of chaotic time series; multilayer; neural networks of support vectors; ARIMA model;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ath:journl:v:56:y:2019:i:4:p:98-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cosmin Catalin Olteanu and Emilia Vasile (email available below). General contact details of provider: https://edirc.repec.org/data/feathro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.