IDEAS home Printed from https://ideas.repec.org/a/asi/aeafrj/v9y2019i7p836-850id1841.html
   My bibliography  Save this article

Fractional Integration in Corporate Social Responsibility Indices: A FIGARCH and HYGARCH Approach

Author

Listed:
  • Quynh-Trang Nguyen
  • John Francis Diaz
  • Jo-Hui Chen
  • Ming-Yen Lee

Abstract

This research focuses on studying the return and volatility of CSR indices. Four models namely ARFIMA, ARFIMA-GARCH, ARFIMA-FIGARCH and ARFIMA-HYGARCH were applied to investigate the long-memory process in these indices. This paper provides investors with knowledge of CSR indices’ time-series data structure, and identifies the most suitable model for volatility estimation. The dataset included 16 CSR indices in terms of environmental, social and corporate governance performance (ESG) under four categories regarding different regional markets in the world. The results show that all the indices exhibit long-memory process, which indicates that predicting their CSR index volatilities in the future to gain excess profits is feasible. In addition, based on log-likelihood values, ARFIMA-HYGARCH appears as the best fitting model to estimate the long-memory effect over the other GARCH models. This paper acknowledges the increasing importance of CSR in selecting investment portfolios to not just maximize returns, but to also promote responsible financing.

Suggested Citation

  • Quynh-Trang Nguyen & John Francis Diaz & Jo-Hui Chen & Ming-Yen Lee, 2019. "Fractional Integration in Corporate Social Responsibility Indices: A FIGARCH and HYGARCH Approach," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(7), pages 836-850.
  • Handle: RePEc:asi:aeafrj:v:9:y:2019:i:7:p:836-850:id:1841
    as

    Download full text from publisher

    File URL: https://archive.aessweb.com/index.php/5002/article/view/1841/2834
    Download Restriction: no

    File URL: https://archive.aessweb.com/index.php/5002/article/view/1841/4135
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alkathery, Mohammed A. & Chaudhuri, Kausik & Nasir, Muhammad Ali, 2022. "Implications of clean energy, oil and emissions pricing for the GCC energy sector stock," Energy Economics, Elsevier, vol. 112(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:asi:aeafrj:v:9:y:2019:i:7:p:836-850:id:1841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Allen (email available below). General contact details of provider: https://archive.aessweb.com/index.php/5002/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.