IDEAS home Printed from https://ideas.repec.org/a/asi/aeafrj/v6y2016i12p706-718id1516.html
   My bibliography  Save this article

A Regression Based Approach to Capturing the Level Dependence in the Volatility of Stock Returns

Author

Listed:
  • Lakshmi Padmakumari
  • S Maheswaran

Abstract

In this paper, we propose an alternative approach to work with the new covariance estimator Cov Ratio based on daily high-low prices that we had put forth in an earlier study (Lakshmi and Maheswaran, 2016). Using the GARCH (1, 1) and IGARCH (1, 1) models, we empirically examine four major stock indices, namely: NIFTY, S&P500, DAX and FTSE100 for the sample period ranging from 1st January 1996 to 30th March 2015. We find that the estimator is upward biased for all the indices under study. Furthermore, we find that there are no residual ARCH effects in these models. In the earlier study, we had proved that random walk behavior cannot explain this overreaction in stock returns. Therefore, we had attributed this phenomenon to the level dependence in the volatility of stock returns. In this study, we find that it is the same Constant Elasticity of Variance (CEV) effect that comes into play here that makes the estimator upward biased as seen in the data.

Suggested Citation

  • Lakshmi Padmakumari & S Maheswaran, 2016. "A Regression Based Approach to Capturing the Level Dependence in the Volatility of Stock Returns," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(12), pages 706-718.
  • Handle: RePEc:asi:aeafrj:v:6:y:2016:i:12:p:706-718:id:1516
    as

    Download full text from publisher

    File URL: https://archive.aessweb.com/index.php/5002/article/view/1516/2160
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:asi:aeafrj:v:6:y:2016:i:12:p:706-718:id:1516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Allen (email available below). General contact details of provider: https://archive.aessweb.com/index.php/5002/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.