IDEAS home Printed from https://ideas.repec.org/a/aob/journl/y2019ispecialp3-14.html
   My bibliography  Save this article

Использование квартальной прогностической модели и сателлитных моделей в системе анализа и прогнозирования НБ РК // Use of the quarterly predictive model and satellite models in the analysis and forecasting system of the NBK

Author

Listed:
  • Жузбаев А.М. // Zhuzbayev A.M.

    (National Bank of Kazakhstan)

  • Орлов К.В. // Orlov K.V.

    (National Bank of Kazakhstan)

Abstract

Данная работа посвящена описанию структурного моделирования, применяемого в Национальном Банке Банка Республики Казахстан (далее – НБРК) в рамках системы анализа и прогнозирования. Структурные модели позволяют оценить экономические взаимосвязи и спрогнозировать динамику основных макроэкономических переменных на среднесрочную перспективу. Модель, используемая в НБРК, - Квартальная прогностическая модель (далее – КПМ). Она обладает преимуществом анализа действий НБРК в зависимости от внутренних и внешних экономических шоков, а также позволяет принимать решения по базовой ставке на основе прогнозного уровня инфляции. В данной статье описаны основные блоки КПМ, представлена реакция макроэкономических показателей на различные шоки, а также представлен пример использования вспомогательной (сателлитной) модели в дополнение к КПМ.

Suggested Citation

  • Жузбаев А.М. // Zhuzbayev A.M. & Орлов К.В. // Orlov K.V., 2019. "Использование квартальной прогностической модели и сателлитных моделей в системе анализа и прогнозирования НБ РК // Use of the quarterly predictive model and satellite models in the analysis and forec," Economic Review(National Bank of Kazakhstan), National Bank of Kazakhstan, issue special, pages 3-14.
  • Handle: RePEc:aob:journl:y:2019:i:special:p:3-14
    as

    Download full text from publisher

    File URL: https://nationalbank.kz/file/download/27462
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    КПМ; денежно-кредитная политика; ВВП; краткосрочные прогнозы; динамические факторные модели; метод главных компонент; фильтр Кальмана; QPM; monetary policy; GDP; short-term forecasts; dynamic factor models; Kalman filter; principal component analysis;
    All these keywords.

    JEL classification:

    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aob:journl:y:2019:i:special:p:3-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Saida Agambayeva (email available below). General contact details of provider: https://edirc.repec.org/data/nbkgvkz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.