IDEAS home Printed from https://ideas.repec.org/a/aob/journl/y2019i1p55-69.html
   My bibliography  Save this article

Использование технологии искусственного интеллекта при осуществлении денежно-кредитной политики // The use of artificial intelligence technology in the implementation of monetary policy

Author

Listed:
  • Күзенбаев С.Т. // Kuzenbayev S.T.

    (National Bank of Kazakhstan)

  • Крупа Е. А. // Krupa E.A.

    (National Bank of Kazakhstan)

Abstract

На сегодняшний день стремительное развитие информационно-коммуникационных технологий, а также распространение различных инновационных направлений, позволяют получать альтернативные данные для анализа. Ярким примером такого направляения является технология искусственного интеллекта. Целью данной работы является определение возможных направлений использования данной технологии при проведении денежно-кредитной политики со стороны регулятора. В исследовании приведено представление технологии, применение в мировой практике, а также проведён анализ решений потенциальных поставщиков, специализирующихся на искусственном интеллекте в рамках проведения анализа тональности текста.

Suggested Citation

  • Күзенбаев С.Т. // Kuzenbayev S.T. & Крупа Е. А. // Krupa E.A., 2019. "Использование технологии искусственного интеллекта при осуществлении денежно-кредитной политики // The use of artificial intelligence technology in the implementation of monetary policy," Economic Review(National Bank of Kazakhstan), National Bank of Kazakhstan, issue 1, pages 55-69.
  • Handle: RePEc:aob:journl:y:2019:i:1:p:55-69
    as

    Download full text from publisher

    File URL: https://nationalbank.kz/file/download/56018
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    денежно-кредитная политика; инфляция; инфляционные и девальвационные ожидания; информационно-коммуникационные технологии; искусственный интеллект; машинное обучение; нейросети; индекс потребительских цен; анализ тональности текста; monetary policy; inflation; inflationary and devaluation expectations; information and communication technologies; artificial intelligence; machine learning; neural networks; consumer price index; text sentiment analysis;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • F17 - International Economics - - Trade - - - Trade Forecasting and Simulation
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aob:journl:y:2019:i:1:p:55-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Saida Agambayeva (email available below). General contact details of provider: https://edirc.repec.org/data/nbkgvkz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.