IDEAS home Printed from https://ideas.repec.org/a/anr/reveco/v8y2016p379-403.html
   My bibliography  Save this article

Measuring and Modeling Attention

Author

Listed:
  • Andrew Caplin

    (Department of Economics, New York University, New York, NY 10003)

Abstract

This article presents a selective review of economic research on attentional choice, taking an observation of Block & Marschak (1960) as its starting point. Because standard choice data conflate utilities and perception, they point out that it is inadequate for research in which attention is endogenous. The review focuses on their thesis that advances in our understanding of attention require modeling of novel choice-based data sets, and corresponding methods of measurement. By way of example, recent attentional research based on measuring and modeling state-dependent stochastic choice data is detailed. Next research steps in relation to strategic attention and the dynamics of learning are outlined. If the thesis of Block & Marschak is valid, engineering of new data sets will become an increasingly essential professional activity as attentional research advances.

Suggested Citation

  • Andrew Caplin, 2016. "Measuring and Modeling Attention," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 379-403, October.
  • Handle: RePEc:anr:reveco:v:8:y:2016:p:379-403
    as

    Download full text from publisher

    File URL: http://www.annualreviews.org/doi/10.1146/annurev-economics-080315-015417
    Download Restriction: Full text downloads are only available to subscribers. Visit the abstract page for more information.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    revealed preference; rational inattention; Bayesian updating; behavioral economics; imperfect information; costly information processing;
    All these keywords.

    JEL classification:

    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anr:reveco:v:8:y:2016:p:379-403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: http://www.annualreviews.org (email available below). General contact details of provider: http://www.annualreviews.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.