Confronting Prior Convictions: On Issues of Prior Sensitivity and Likelihood Robustness in Bayesian Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hedibert F. Lopes & Nicholas G. Polson, 2016. "Particle Learning for Fat-Tailed Distributions," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1666-1691, December.
- Becher, Michael & Stegmueller, Daniel, 2019. "Cognitive Ability, Union Membership, and Voter Turnout," IAST Working Papers 19-97, Institute for Advanced Study in Toulouse (IAST).
- Ho, Paul, 2023.
"Global robust Bayesian analysis in large models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
- Paul Ho, 2019. "Global Robust Bayesian Analysis in Large Models," 2019 Meeting Papers 390, Society for Economic Dynamics.
- Paul Ho, 2020. "Global Robust Bayesian Analysis in Large Models," Working Paper 20-07, Federal Reserve Bank of Richmond.
- Compare, M. & Baraldi, P. & Bani, I. & Zio, E. & Mc Donnell, D., 2017. "Development of a Bayesian multi-state degradation model for up-to-date reliability estimations of working industrial components," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 25-40.
More about this item
Keywords
Bayesian methods; marginal likelihood; scale mixture of normals; Dirichlet process mixture; factor models; Markov chain Monte Carlo; Gibbs sampler; sequential Monte Carlo;All these keywords.
JEL classification:
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anr:reveco:v:3:y:2011:p:107-131. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: http://www.annualreviews.org (email available below). General contact details of provider: http://www.annualreviews.org .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.