IDEAS home Printed from https://ideas.repec.org/a/anr/reveco/v3y2011p107-131.html
   My bibliography  Save this article

Confronting Prior Convictions: On Issues of Prior Sensitivity and Likelihood Robustness in Bayesian Analysis

Author

Listed:
  • Hedibert F. Lopes

    (Booth School of Business, University of Chicago, Chicago, Illinois 60637)

  • Justin L. Tobias

    (Economics Department, Purdue University, Lafayette, Indiana 47907)

Abstract

In this review we explore issues of the sensitivity of Bayes estimates to the prior and form of the likelihood. With respect to the prior, we argue that non-Bayesian analyses also incorporate prior information, illustrate that the Bayes posterior mean and the frequentist maximum likelihood estimator are often asymptotically equivalent, review a simple computational strategy for analyzing sensitivity to the prior in practice, and finally document the potentially important role of the prior in Bayesian model comparison. With respect to issues of likelihood robustness, we review a variety of computational strategies for significantly expanding the maintained sampling model, including the use of finite Gaussian mixture models and models based on Dirichlet process priors.

Suggested Citation

  • Hedibert F. Lopes & Justin L. Tobias, 2011. "Confronting Prior Convictions: On Issues of Prior Sensitivity and Likelihood Robustness in Bayesian Analysis," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 107-131, September.
  • Handle: RePEc:anr:reveco:v:3:y:2011:p:107-131
    as

    Download full text from publisher

    File URL: http://www.annualreviews.org/doi/abs/10.1146/annurev-economics-111809-125134
    Download Restriction: Full text downloads are only available to subscribers. Visit the abstract page for more information.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hedibert F. Lopes & Nicholas G. Polson, 2016. "Particle Learning for Fat-Tailed Distributions," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1666-1691, December.
    2. Becher, Michael & Stegmueller, Daniel, 2019. "Cognitive Ability, Union Membership, and Voter Turnout," IAST Working Papers 19-97, Institute for Advanced Study in Toulouse (IAST).
    3. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    4. Compare, M. & Baraldi, P. & Bani, I. & Zio, E. & Mc Donnell, D., 2017. "Development of a Bayesian multi-state degradation model for up-to-date reliability estimations of working industrial components," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 25-40.

    More about this item

    Keywords

    Bayesian methods; marginal likelihood; scale mixture of normals; Dirichlet process mixture; factor models; Markov chain Monte Carlo; Gibbs sampler; sequential Monte Carlo;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anr:reveco:v:3:y:2011:p:107-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: http://www.annualreviews.org (email available below). General contact details of provider: http://www.annualreviews.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.