IDEAS home Printed from https://ideas.repec.org/a/ana/journl/v10y2024i1p17-27.html
   My bibliography  Save this article

Using Advanced Machine Learning Techniques to Predict the Sales Volume of Non-Fungible Tokens

Author

Listed:
  • Ozge Camalan

    (Atılım University Department of Economics)

  • Sahika Gokmen

    (Hacı Bayram Veli University, Department of Econometrics and Uppsala University, Department of Statistics)

  • Sibel Atan

    (Hacı Bayram Veli University, Department of Econometrics)

Abstract

Non-fungible tokens (NFTs) are a type of digital asset based on blockchain that contain unique codes verifying the authenticity and ownership of different assets such as art pieces, music, gaming items, collections, and so on. This phenomenon and its markets have grown significantly since the beginning of 2021. This study, using daily data between November 2017 and November 2022, predicts the volume of NFT sales by utilising Random Forest (RF), GBM, XGBoost, and LightGBM methods from the community machine learning methods. In the predictions, several financial variables, including Gold, Bitcoin/USD, Ethereum/USD, S&P 500 index, Nasdaq 100, Oil/USD, Euro/USD, and CDS data, are treated as independent variables. According to the results, XGBoost is found to be the best prediction method for NFT market volume estimation concerning several statistical criteria, e.g., MAE, MAPE, and RMSE, and the most significant influential feature in determining prices is the Ethereum/USD exchange rate.

Suggested Citation

  • Ozge Camalan & Sahika Gokmen & Sibel Atan, 2024. "Using Advanced Machine Learning Techniques to Predict the Sales Volume of Non-Fungible Tokens," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 10(1), pages 17-27, June.
  • Handle: RePEc:ana:journl:v:10:y:2024:i:1:p:17-27
    DOI: 10.22440/wjae.10.1.2
    as

    Download full text from publisher

    File URL: https://journal.econworld.org/index.php/econworld/article/view/242/90
    Download Restriction: no

    File URL: https://libkey.io/10.22440/wjae.10.1.2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yousaf, Imran & Yarovaya, Larisa, 2022. "Static and dynamic connectedness between NFTs, Defi and other assets: Portfolio implication," Global Finance Journal, Elsevier, vol. 53(C).
    2. Maouchi, Youcef & Charfeddine, Lanouar & El Montasser, Ghassen, 2022. "Understanding digital bubbles amidst the COVID-19 pandemic: Evidence from DeFi and NFTs," Finance Research Letters, Elsevier, vol. 47(PA).
    3. Lennart Ante, 2022. "The Non-Fungible Token (NFT) Market and Its Relationship with Bitcoin and Ethereum," FinTech, MDPI, vol. 1(3), pages 1-9, June.
    4. Matthieu Nadini & Laura Alessandretti & Flavio Di Giacinto & Mauro Martino & Luca Maria Aiello & Andrea Baronchelli, 2021. "Mapping the NFT revolution: market trends, trade networks and visual features," Papers 2106.00647, arXiv.org, revised Sep 2021.
    5. Dowling, Michael, 2022. "Is non-fungible token pricing driven by cryptocurrencies?," Finance Research Letters, Elsevier, vol. 44(C).
    6. Aharon, David Y. & Demir, Ender, 2022. "NFTs and asset class spillovers: Lessons from the period around the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 47(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Shoaib & Al-Nassar, Nassar S. & Naveed, Muhammad, 2024. "Bridging the gap: Uncovering static and dynamic relationships between digital assets and BRICS equity markets," Global Finance Journal, Elsevier, vol. 60(C).
    2. Proelss, Juliane & Sévigny, Stéphane & Schweizer, Denis, 2023. "GameFi: The perfect symbiosis of blockchain, tokens, DeFi, and NFTs?," International Review of Financial Analysis, Elsevier, vol. 90(C).
    3. Elie Bouri & Matteo Foglia & Sayar Karmakar & Rangan Gupta, 2024. "Return-Volatility Nexus in the Digital Asset Class: A Dynamic Multilayer Connectedness Analysis," Working Papers 202432, University of Pretoria, Department of Economics.
    4. Zhang, Wenting & Liu, Tiantian & Zhang, Yulian & Hamori, Shigeyuki, 2024. "Can NFTs hedge the risk of traditional assets after the COVID-19 pandemic?," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    5. Qiao, Xingzhi & Zhu, Huiming & Tang, Yiding & Peng, Cheng, 2023. "Time-frequency extreme risk spillover network of cryptocurrency coins, DeFi tokens and NFTs," Finance Research Letters, Elsevier, vol. 51(C).
    6. Ghosh, Bikramaditya & Bouri, Elie & Wee, Jung Bum & Zulfiqar, Noshaba, 2023. "Return and volatility properties: Stylized facts from the universe of cryptocurrencies and NFTs," Research in International Business and Finance, Elsevier, vol. 65(C).
    7. Wang, Yizhi, 2022. "Volatility spillovers across NFTs news attention and financial markets," International Review of Financial Analysis, Elsevier, vol. 83(C).
    8. Bao, Te & Ma, Mengzhong & Wen, Yonggang, 2023. "Herding in the non-fungible token (NFT) market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    9. Foglia, Matteo & Maci, Giampiero & Pacelli, Vincenzo, 2024. "FinTech and fan tokens: Understanding the risks spillover of digital asset investment," Research in International Business and Finance, Elsevier, vol. 68(C).
    10. Ali, Shoaib & Umar, Muhammad & Gubareva, Mariya & Vo, Xuan Vinh, 2024. "Extreme connectedness between NFTs and US equity market: A sectoral analysis," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 299-315.
    11. BenMabrouk, Houda & Sassi, Syrine & Soltane, Feriel & Abid, Ilyes, 2024. "Connectedness and portfolio hedging between NFTs segments, American stocks and cryptocurrencies Nexus," International Review of Financial Analysis, Elsevier, vol. 91(C).
    12. Zhang, Luyao & Sun, Yutong & Quan, Yutong & Cao, Jiaxun & Tong, Xin, 2023. "On the Mechanics of NFT Valuation: AI Ethics and Social Media," OSF Preprints qwpdx, Center for Open Science.
    13. Wang, Jying-Nan & Lee, Yen-Hsien & Liu, Hung-Chun & Hsu, Yuan-Teng, 2023. "Dissecting returns of non-fungible tokens (NFTs): Evidence from CryptoPunks," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
    14. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Working Paper series 24-07, Rimini Centre for Economic Analysis.
    15. Ewelina Plachimowicz & Piotr Wójcik, 2022. "What makes Punks worthy? Valuation of Non-Fungible Tokens based on the CryptoPunks collection using the hedonic pricing method," Working Papers 2022-27, Faculty of Economic Sciences, University of Warsaw.
    16. Ho, Kin-Hon & Law, Monica & Hou, Yun & Chan, Tse-Tin, 2024. "Spillover analysis on NFTs, NFT-affiliated tokens and NFT submarkets," Finance Research Letters, Elsevier, vol. 60(C).
    17. Mingxuan He, 2023. "Deep Learning for Dynamic NFT Valuation," Papers 2312.05346, arXiv.org.
    18. Urom, Christian & Ndubuisi, Gideon & Guesmi, Khaled, 2022. "Dynamic dependence and predictability between volume and return of Non-Fungible Tokens (NFTs): The roles of market factors and geopolitical risks," Finance Research Letters, Elsevier, vol. 50(C).
    19. Wael Hemrit & Noureddine Benlagha & Racha Ben Arous & Mounira Ben Arab, 2023. "Exploring the time‐frequency connectedness among non‐fungible tokens and developed stock markets," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 30(4), pages 192-207, October.
    20. Fakhfekh, Mohamed & Bejaoui, Azza & Bariviera, Aurelio F. & Jeribi, Ahmed, 2024. "Dependence structure between NFT, DeFi and cryptocurrencies in turbulent times: An Archimax copula approach," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).

    More about this item

    Keywords

    Financial assets; Non-fungible tokens; Machine learning;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ana:journl:v:10:y:2024:i:1:p:17-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Unal Tongur (email available below). General contact details of provider: https://edirc.repec.org/data/ewanatr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.