The Generalizability of Financial Distress Prediction Models: Evidence from Turkey
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Oz, Ibrahim Onur & Simga-Mugan, Can, 2018. "Bankruptcy prediction models' generalizability: Evidence from emerging market economies," Advances in accounting, Elsevier, vol. 41(C), pages 114-125.
- Oz, Ibrahim Onur & Yelkenci, Tezer & Meral, Gorkem, 2021. "The role of earnings components and machine learning on the revelation of deteriorating firm performance," International Review of Financial Analysis, Elsevier, vol. 77(C).
More about this item
Keywords
Financial distress prediction; emerging markets; model comparison; financial crisis; multiple discriminant analysis; logit; probit; hazard model; financial ratios;All these keywords.
JEL classification:
- M21 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics - - - Business Economics
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
- C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ami:journl:v:14:y:2015:i:4:p:685-703. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cristina Tartavulea (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.