IDEAS home Printed from https://ideas.repec.org/a/akh/journl/633.html
   My bibliography  Save this article

Forecasting crop yields through climate variables using mixed frequency data. The case of Argentine soybeans

Author

Listed:
  • Magdalena Cornejo

    (Escuela de Gobierno, Universidad Torcuato Di Tella, Argentina y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina)

Abstract

Este artículo evalúa el valor de utilizar información sobre variables climáticas publicadas con anticipación y con una frecuencia superior a la variable objetivo de interés -los rendimientos de los cultivos- con el fin de obtener pronósticos a corto plazo. Se utilizan datos climáticos agregados y desagregados, esquemas de ponderación alternativos y diferentes esquemas de actualización para evaluar el desempeño de las predicciones. Este estudio se centra en el caso de los rendimientos de la soja en Argentina. Los resultados muestran que los modelos que incluyen datos meteorológicos de alta frecuencia obtuvieron mejores resultados, particularmente durante las tres campañas consecutivas después de 2008/09, cuando el rendimiento de la soja disminuyó en casi un 50%. A su vez, las combinaciones de pronóstico mostraron un mejor desempeño que los modelos de pronóstico individuales.

Suggested Citation

  • Magdalena Cornejo, 2021. "Forecasting crop yields through climate variables using mixed frequency data. The case of Argentine soybeans," Económica, Instituto de Investigaciones Económicas, Facultad de Ciencias Económicas, Universidad Nacional de La Plata, vol. 67, pages 93-106, January-D.
  • Handle: RePEc:akh:journl:633
    as

    Download full text from publisher

    File URL: https://revistas.unlp.edu.ar/Economica/article/view/10621/12171
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    Rendimiento; pronósticos; clima; frecuencias mixtas; soja;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:akh:journl:633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Laura Carella (email available below). General contact details of provider: https://edirc.repec.org/data/funlpar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.