IDEAS home Printed from https://ideas.repec.org/a/ajp/edwast/v9y2025i1p413-442id4156.html
   My bibliography  Save this article

Aerial e-mobility perspective: Anticipated designs and operational capabilities of eVTOL urban air mobility (UAM) aircraft

Author

Listed:
  • Osama A. Marzouk

Abstract

We collected data about 13 urban air mobility (UAM) electric vertical take-off and landing (eVTOL) aircraft from 12 UAM companies in the world. While none of these models has yet reached a large-scale commercial operation (particularly as air taxis), some of them progressed well in the certification process and may have their UAM models widely operated within a few years. This article focuses on the variability in the configurations of these UAM eVTOL aircraft for aerial e-mobility; such as single-fixed-wing, tandem-tilt-wing, canard wing, fixed-rotor fixed-wing, full tilt-rotor, partial tilt-rotor, V-shaped tail, tailless, twin tail, conventional tail assembly, distributed propulsion, multicopter, rear forward thrust propeller, ducted fans, and a hybrid airplane-helicopter design. The 13 UAM eVTOL aircraft covered here are: (1) EH216-S (by EHang), (2) VoloCity (by Volocopter), (3) Lilium Jet (by Lilium), (4) VoloRegion (by Volocopter), (5) CityAirbus NextGen (by Airbus), (6) Passenger Air Vehicle - PAV (by Boeing), (7) S-A2 (by Hyundai), (8) Joby (by Joby Aviation), (9) VX4 (by Vertical Aerospace Group), (10) Midnight (by Archer Aviation), (11) Eve (by Eve Air Mobility), (12) Jaunt (by Jaunt Air Mobility), and (13) Generation 6 (by Wisk Aero). Out of these 13 UAM eVTOL aircraft models for aerial e-mobility and/or air taxis, we found that 11 models utilize a wing configuration, while only two use a wingless multirotor concept (as in hobbyist drones). A fixed-wing design is associated with a faster travel speed, at the expense of added restrictions on maneuvering and low-speed travel (or hovering). Six models are intended to have an onboard human pilot, while the remaining seven models are designed to be pilotless. One model demonstrated the ability to use hydrogen as a clean source of energy through a fuel cell system.

Suggested Citation

  • Osama A. Marzouk, 2025. "Aerial e-mobility perspective: Anticipated designs and operational capabilities of eVTOL urban air mobility (UAM) aircraft," Edelweiss Applied Science and Technology, Learning Gate, vol. 9(1), pages 413-442.
  • Handle: RePEc:ajp:edwast:v:9:y:2025:i:1:p:413-442:id:4156
    as

    Download full text from publisher

    File URL: https://learning-gate.com/index.php/2576-8484/article/view/4156/1618
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ajp:edwast:v:9:y:2025:i:1:p:413-442:id:4156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Melissa Fernandes (email available below). General contact details of provider: https://learning-gate.com/index.php/2576-8484/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.