Author
Listed:
- Fakher Rahim
- Nada Abdulkareem Hameed
- Saja Abdulfattah Salih
- Aqeel Mahmood Jawad
- Hayder Mahmood Salman
- Dmytro Chornomordenko
Abstract
Natural Language Processing (NLP) is causing a significant change in the healthcare industry. This state-of-the-art technology is transforming the processing, analysis, and utilisation of healthcare data by improving patient care and clinical decision-making. This article aims to analyse the current and prospective uses of natural language processing (NLP) in the healthcare industry. We examine the tangible advancements that have been made and shed light on the bright prospects that lie ahead. The approach for early sickness diagnosis involves the use of advanced predictive analytics based on natural language processing (NLP). By analysing unstructured patient narratives, models may accurately identify potential health issues with exceptional precision, sometimes exceeding 90% accuracy. This article discusses the benefits of using voice recognition and chatbots, such as improved patient-provider communication and decreased administrative tasks. Systems powered by natural language processing have made significant advancements, as shown by statistical data indicating that they attain an accuracy rate of 80% or more on tasks like clinical text classification. Consequently, medical record review and data extraction have been automated, hence alleviating the burden on healthcare personnel. Hospitals may use sentiment analysis on online reviews to assess patient satisfaction levels and implement targeted improvements, therefore enhancing the overall patient experience. Undoubtedly, natural language processing (NLP) is revolutionizing the healthcare industry by enabling data-driven insights to optimise operations, personalize patient therapy, and enhance overall patient care quality. In order to fully harness the capabilities of natural language processing, we must address existing challenges and promote continuous research in areas such as deep learning and explainability. Only by doing so can we establish a healthcare system that is both more health-oriented and reliant on data.
Suggested Citation
Fakher Rahim & Nada Abdulkareem Hameed & Saja Abdulfattah Salih & Aqeel Mahmood Jawad & Hayder Mahmood Salman & Dmytro Chornomordenko, 2024.
"Natural language processing for healthcare: Applications, progress, and future directions,"
Edelweiss Applied Science and Technology, Learning Gate, vol. 8(4), pages 2027-2041.
Handle:
RePEc:ajp:edwast:v:8:y:2024:i:4:p:2027-2041:id:1579
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ajp:edwast:v:8:y:2024:i:4:p:2027-2041:id:1579. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Melissa Fernandes (email available below). General contact details of provider: https://learning-gate.com/index.php/2576-8484/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.