IDEAS home Printed from https://ideas.repec.org/a/aio/aucsse/v2y2010i12p212-223.html
   My bibliography  Save this article

Classical Lassical And Behavioural Finance In Investor Decision

Author

Listed:
  • Lect. Aurora Murgea Ph. D

    (West University of Timisoara Faculty of Economics and Business Administration Timisoara, Romania)

Abstract

Conceptual model of individual investor behavior presented in this paper aims to structure a part of the vast knowledge about investor behavior that is present in the finance field. The investment process could be seen as driven by dual mental processes (cognitive and affective) and the interplay between these systems contributes to bounded rational behavior manifested through various heuristics and biases. The investment decision is seen as a result of an interaction between the investor and the investment environment

Suggested Citation

  • Lect. Aurora Murgea Ph. D, 2010. "Classical Lassical And Behavioural Finance In Investor Decision," Annals of University of Craiova - Economic Sciences Series, University of Craiova, Faculty of Economics and Business Administration, vol. 2(38), pages 1-12, May.
  • Handle: RePEc:aio:aucsse:v:2:y:2010:i:12:p:212-223
    as

    Download full text from publisher

    File URL: http://feaa.ucv.ro/AUCSSE/0038v2-024.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tesfatsion, Leigh, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 16, pages 831-880, Elsevier.
    2. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    3. Shefrin, Hersh M & Thaler, Richard H, 1988. "The Behavioral Life-Cycle Hypothesis," Economic Inquiry, Western Economic Association International, vol. 26(4), pages 609-643, October.
    4. Jose Luiz Barros Fernandes & Juan Ignacio Pena & Benjamin Miranda Tabak, 2010. "Behaviour finance and estimation risk in stochastic portfolio optimization," Applied Financial Economics, Taylor & Francis Journals, vol. 20(9), pages 719-738.
    5. Daniel Kahneman, 2003. "Maps of Bounded Rationality: Psychology for Behavioral Economics," American Economic Review, American Economic Association, vol. 93(5), pages 1449-1475, December.
    6. David Hirshleifer & Kewei Hou & Siew Hong Teoh, 2012. "The Accrual Anomaly: Risk or Mispricing?," Management Science, INFORMS, vol. 58(2), pages 320-335, February.
    7. Basu, S, 1977. "Investment Performance of Common Stocks in Relation to Their Price-Earnings Ratios: A Test of the Efficient Market Hypothesis," Journal of Finance, American Finance Association, vol. 32(3), pages 663-682, June.
    8. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    9. Boer-Sorban, K. & de Bruin, A. & Kaymak, U., 2005. "On the Design of Artificial Stock Markets," ERIM Report Series Research in Management ERS-2005-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    11. Kelly, Patrick J. & Meschke, Felix, 2010. "Sentiment and stock returns: The SAD anomaly revisited," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1308-1326, June.
    12. David Hirshleifer, 2001. "Investor Psychology and Asset Pricing," Journal of Finance, American Finance Association, vol. 56(4), pages 1533-1597, August.
    13. Chan, Wesley & Frankel, Richard & Kothari, S.P., 2002. "Testing Behavioral Finance Theories Using Trends and Sequences in Financial Performance," Working papers 4375-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    14. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    16. Gur Huberman & Wei Jiang, 2006. "Offering versus Choice in 401(k) Plans: Equity Exposure and Number of Funds," Journal of Finance, American Finance Association, vol. 61(2), pages 763-801, April.
    17. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Hunguru & Vusumuzi Sibanda & Ruramayi Tadu, 2020. "Determinants of Investment Decisions: A Study of Individual Investors on the Zimbabwe Stock Exchange," Applied Economics and Finance, Redfame publishing, vol. 7(5), pages 38-53, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Hommes, C.H. & Wagener, F.O.O., 2008. "Complex evolutionary systems in behavioral finance," CeNDEF Working Papers 08-05, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    3. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    4. He, Xue-Zhong & Li, Kai & Wei, Junjie & Zheng, Min, 2009. "Market stability switches in a continuous-time financial market with heterogeneous beliefs," Economic Modelling, Elsevier, vol. 26(6), pages 1432-1442, November.
    5. Chen, Shu-Heng, 2012. "Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 1-25.
    6. Hommes, Cars & in ’t Veld, Daan, 2017. "Booms, busts and behavioural heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 101-124.
    7. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.
    8. He, Xue-Zhong & Zheng, Min, 2010. "Dynamics of moving average rules in a continuous-time financial market model," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 615-634, December.
    9. Nguyen, Hung T. & Pham, Mia Hang, 2021. "Air pollution and behavioral biases: Evidence from stock market anomalies," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    10. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.
    11. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    12. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    13. Chiarella, Carl & He, Xue-Zhong & Hommes, Cars, 2006. "A dynamic analysis of moving average rules," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1729-1753.
    14. Shu‐Heng Chen & Shu G. Wang, 2011. "Emergent Complexity In Agent‐Based Computational Economics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(3), pages 527-546, July.
    15. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    16. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.
    17. Bottazzi, Giulio & Dindo, Pietro, 2014. "Evolution and market behavior with endogenous investment rules," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 121-146.
    18. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    19. Richardson, Scott & Tuna, Irem & Wysocki, Peter, 2010. "Accounting anomalies and fundamental analysis: A review of recent research advances," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 410-454, December.
    20. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.

    More about this item

    Keywords

    investor behaviour; financial decisions making; cognitive modelling; sentiments; market efficiency;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aio:aucsse:v:2:y:2010:i:12:p:212-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anca Bandoi (email available below). General contact details of provider: https://edirc.repec.org/data/fecraro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.