IDEAS home Printed from https://ideas.repec.org/a/ahs/journl/v7y2022isip61-80.html
   My bibliography  Save this article

İçeriden Öğrenenlerin Ticaretine Maruz Kalan Şirketlere Ait Hisse Senedi Getirilerinin K-En Yakın Komşu Algoritması İle Tahmin Edilmesi: ABD Borsaları Örneği

Author

Listed:
  • Barış Aksoy

Abstract

Bu çalışmada ABD Borsalarında işlem gören ve içeriden öğrenenlerin ticaretine maruz kalan şirketlere ait 01.01.2020-26.02.2022 dönemindeki 10121 işlem verileri alınarak ilgili şirketlerin içeriden öğrenenlerin ticareti tarihinden 3, 9, 15, 21 ve 27 ay sonraki getirileri tahmin edilmiştir. Sonuçlar denetimli veri madenciliği yöntemlerinden KNN (K En Yakın Komşu Algoritması) ile tahmin edilmiştir. Analiz sonucunda 01.01.2022-26.03.2022 döneminde ticarete maruz kalan 257 örneğin 224’ü doğru getiri aralığında tahmin edilmiş ve 3 ay öncesi hisse senedi getiri tahmin başarımı %87,16 olarak bulunmuştur. 01.07.2021-31.12.2021 döneminde ticarete maruz kalan 2358 örneğin 1936’sı doğru getiri aralığında tahmin edilmiş ve 9 ay öncesi hisse senedi getiri tahmin başarımı %82,10 olarak bulunmuştur. 01.01.2021-30.06.2021 döneminde ticarete maruz kalan 2919 örneğin 2495’i doğru getiri aralığında tahmin edilmiş ve 15 ay öncesi hisse senedi getiri tahmin başarımı %85,47 olarak bulunmuştur. 01.07.2020-31.12.2020 döneminde ticarete maruz kalan 2267 örneğin 1980’i doğru getiri aralığında tahmin edilmiş ve 21 ay öncesi hisse senedi getiri tahmin başarımı %87,34 olarak bulunmuştur. 01.01.2020-30.06.2020 döneminde ticarete maruz kalan 2320 örneğin 2016’sı doğru getiri aralığında tahmin edilmiş ve 27 ay öncesi getiri tahmin başarımı %86,90 olarak bulunmuştur.

Suggested Citation

  • Barış Aksoy, 2022. "İçeriden Öğrenenlerin Ticaretine Maruz Kalan Şirketlere Ait Hisse Senedi Getirilerinin K-En Yakın Komşu Algoritması İle Tahmin Edilmesi: ABD Borsaları Örneği," Journal of Research in Economics, Politics & Finance, Ersan ERSOY, vol. 7(SI), pages 61-80.
  • Handle: RePEc:ahs:journl:v:7:y:2022:i:si:p:61-80
    DOI: 10.30784/epfad.1161781
    as

    Download full text from publisher

    File URL: https://dergipark.org.tr/tr/download/article-file/2595441
    Download Restriction: no

    File URL: https://libkey.io/10.30784/epfad.1161781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    İçeriden Öğrenenlerin Ticareti; Hisse Senedi Getiri Tahmini; K En yakın Komşu Algoritması; ABD Borsaları;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ahs:journl:v:7:y:2022:i:si:p:61-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ersan Ersoy (email available below). General contact details of provider: https://epfjournal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.