IDEAS home Printed from https://ideas.repec.org/a/ahs/journl/v6y2021i2p565-586.html
   My bibliography  Save this article

Yapay Zeka Yöntemleri İle Hisse Senedi Fiyat Öngörüleri

Author

Listed:
  • Efe Arda
  • Güray Küçükkocaoğlu

Abstract

Finansal varlık fiyatlarının geleceğinin tahmin edilmesi literatür ve uygulamada uzun zamandır ilgi çeken bir konudur. Son yıllarda, borsaya kote şirketlerin hisse senetlerinin fiyat hareketleri öngörme ve geleceğe dönük değerlerini tahmin etme hedefi için yapay zeka algoritmalarının başarılı yöntemler sundukları farklı akademik çalışmalarca ortaya konulmuştur. Belirtilen akademik çalışmaların büyük çoğunluğu yurt dışında bulunan piyasalarda yapılmıştır. Bu durumun geçerliliğini BIST 30 endeksi hisselerinde test etmek için bu çalışmada yedi farklı yapay zeka algoritması programlanmış, 30 hissenin 2014-2016 yılları günlük kapanış fiyatı verileri ile algoritmalar eğitilmiş ve bir firma için üretilen kapanış değerleri tahminleri gerçekleşen değerlerle kıyaslanmıştır. Veri seti için 02/01/2014 ve 30/12/2016 tarihleri arasında işlem yapılan 755 iş günü kullanılmıştır. Kullanılan öğrenme sürelerinin performans üzerindeki etkilerini görmek için öğrenme/tahmin oranları %80/20, %90/10, %99/1 olarak belirlenen üç farklı deney yapılmıştır. Çalışmanın sonucunda doğrusal regresyon temelli algoritmaların BIST30 hisse senedi fiyat hareket yönünü tahmin etmede, nöral ağ ve Poisson regresyonu yöntemlerinin ise kapanış fiyatı değerini tahmin etmede etkili oldukları görülmüştür.

Suggested Citation

  • Efe Arda & Güray Küçükkocaoğlu, 2021. "Yapay Zeka Yöntemleri İle Hisse Senedi Fiyat Öngörüleri," Journal of Research in Economics, Politics & Finance, Ersan ERSOY, vol. 6(2), pages 565-586.
  • Handle: RePEc:ahs:journl:v:6:y:2021:i:2:p:565-586
    DOI: 10.30784/epfad.878664
    as

    Download full text from publisher

    File URL: https://dergipark.org.tr/tr/download/article-file/1571449
    Download Restriction: no

    File URL: https://libkey.io/10.30784/epfad.878664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Finansal Zaman Serileri; Yapay Zeka; Makine Ogrenmesi; Borsa Analizi; Regresyon;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ahs:journl:v:6:y:2021:i:2:p:565-586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ersan Ersoy (email available below). General contact details of provider: https://epfjournal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.