Author
Listed:
- Helfand, Steven M.
- Moreira, Ajax Reynaldo Bello
- Figueiredo, Adriano Marcos Rodrigues
Abstract
O censo agropecuário 1995-96 é utilizado para estudar os fatores responsáveis pelas diferenças na pobreza entre os estabelecimentos agrícolas no Brasil. As diferenças entre as regiões e as seguintes dicotomias são analisadas: proprietários/não proprietários; familiares/não familiares; intensivos em insumos/não intensivos; com/sem máquinas. O artigo utiliza uma metodologia semiparamétrica. Primeiro, uma função fronteira estocástica de lucro é estimada. Em seguida, simulações não paramétricas contrafactuais são utilizadas para identificar os fatores que explicam as diferenças em pobreza. Os fatores incluem o tamanho da propriedade, o trabalho familiar, a lucratividade e as variáveis utilizadas para explicar a lucratividade no modelo de fronteira estocástica. O artigo conclui que a falta de terra e os baixos níveis de produtividade são importantes motivos para a pobreza entre produtores agrícolas. É improvável que qualquer um deles isoladamente possa solucionar o problema da pobreza. As diferenças em “eficiência” – capturadas pelo termo de erro na função fronteira de lucro – são importantes para explicar as diferenças entre os pobres e os não pobres, mas não para as demais dicotomias estudadas. Isto sugere que os fatores não observáveis – como restrições ou falhas de mercado – são importantes para explicar a pobreza entre produtores agrícolas no Brasil. ....The 1995-96 agricultural census is used to explore factors that account for differences in poverty among agricultural establishments in Brazil. Differences across regions and the following dichotomies are analyzed: owners/non-owners, family/non-family, input intensive/non-intensive, with machines/without machines. The paper uses a semi-parametric methodology. First, a stochastic frontier profit function is estimated. Then, non-parametric counterfactual simulations are used to identify factors which explain differences in poverty. Factors include farm size, family labor, profitability and the variables used to explain profitability in the stochastic frontier model. The paper concludes that lack of land and low levels of productivity are both important reasons for poverty among agricultural producers. It is unlikely that either one alone could solve the poverty problem. Differences in “efficiency” – captured by the error term in the frontier profit function – are important to explain differences between the poor and non-poor, but not for any of the other dichotomies studied. This suggests that unobservable factors – such as restrictions or market failures – are important to explain poverty among agricultural producers in Brazil.
Suggested Citation
Helfand, Steven M. & Moreira, Ajax Reynaldo Bello & Figueiredo, Adriano Marcos Rodrigues, 2011.
"Explicando as Diferenças de Pobreza entre Produtores Agrícolas no Brasil: simulações contrafactuais com o censo agropecuário 1995-96,"
Brazilian Journal of Rural Economy and Sociology (Revista de Economia e Sociologia Rural-RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 49(2), pages 1-28, June.
Handle:
RePEc:ags:rdecag:152576
DOI: 10.22004/ag.econ.152576
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Morais, G. & Braga, J.M., 2018.
"Irrigation and farm efficiency in Brazil,"
2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia
275987, International Association of Agricultural Economists.
- Cláudio Almeida & Moisés Mourão & Nadine Dessay & Anne-Elisabeth Lacques & Antônio Monteiro & Laurent Durieux & Adriano Venturieri & Frédérique Seyler, 2016.
"Typologies and Spatialization of Agricultural Production Systems in Rondônia, Brazil: Linking Land Use, Socioeconomics and Territorial Configuration,"
Land, MDPI, vol. 5(2), pages 1-20, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:rdecag:152576. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/soberea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.