IDEAS home Printed from https://ideas.repec.org/a/ags/paaero/233003.html
   My bibliography  Save this article

Prognozy Wydajności Mlecznej Krów W Polsce I W Unii Europejskiej Na Lata 2030 I 2050

Author

Listed:
  • Syp, Alina

Abstract

The aim of the study was to compare the efficiency of milk production in Poland and the European Union in the years of 2030 and 2050 applying the CAPRI model and trend analysis. The source of the data for the analysis was the CSO database containing data on the average performance of cows in Poland and cows in barns that are under control, and the FADN database. CAPRI model analysis was performed according to the reference scenario (SSP2) for medium and high milk yield. According to the CAPRI model in 2030 and 2050, the average milk yield in Poland will increase by 22 and 28% compared to 2010. On the basis of trend analysis, in 2030 for the average data from the CSO index of growth is 41%, and 46 and 60%, respectively for PFHBiPM and FADN.

Suggested Citation

  • Syp, Alina, 2015. "Prognozy Wydajności Mlecznej Krów W Polsce I W Unii Europejskiej Na Lata 2030 I 2050," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2015(1), February.
  • Handle: RePEc:ags:paaero:233003
    DOI: 10.22004/ag.econ.233003
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/233003/files/17-1-Syp.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.233003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomoko Hasegawa & Shinichiro Fujimori & Petr Havlík & Hugo Valin & Benjamin Leon Bodirsky & Jonathan C. Doelman & Thomas Fellmann & Page Kyle & Jason F. L. Koopman & Hermann Lotze-Campen & Daniel Maso, 2018. "Risk of increased food insecurity under stringent global climate change mitigation policy," Nature Climate Change, Nature, vol. 8(8), pages 699-703, August.
    2. Antle, John M., 2015. "Climate Change, Vulnerability and Food Insecurity," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 30(2), pages 1-7.
    3. Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    4. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    5. Philip G. Pardey & Jason M. Beddow & Terrance M. Hurley & Timothy K.M. Beatty & Vernon R. Eidman, 2014. "A Bounds Analysis of World Food Futures: Global Agriculture Through to 2050," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), pages 571-589, October.
    6. Declan Conway & Robert J. Nicholls & Sally Brown & Mark G. L. Tebboth & William Neil Adger & Bashir Ahmad & Hester Biemans & Florence Crick & Arthur F. Lutz & Ricardo Safra Campos & Mohammed Said & Ch, 2019. "The need for bottom-up assessments of climate risks and adaptation in climate-sensitive regions," Nature Climate Change, Nature, vol. 9(7), pages 503-511, July.
    7. Qiming Zhang & Zhilin Xia & Yi-Bing Cheng & Min Gu, 2018. "High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    8. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    9. Wiebe, Keith & Sulser, Timothy B & Dunston, Shahnila & Rosegrant, Mark W. & Fuglie, Keith & Willenbockel, Dirk & Nelson, Gerald C., 2020. "Modeling impacts of faster productivity growth to inform the CGIAR initiative on Crops to End Hunger," SocArXiv h2g6r, Center for Open Science.
    10. Lochhead, Kyle & Ghafghazi, Saeed & Havlik, Petr & Forsell, Nicklas & Obersteiner, Michael & Bull, Gary & Mabee, Warren, 2016. "Price trends and volatility scenarios for designing forest sector transformation," Energy Economics, Elsevier, vol. 57(C), pages 184-191.
    11. Hertel, By Thomas W. & Baldos, Uris L.C. & Fuglie, Keith O., 2020. "Trade in technology: A potential solution to the food security challenges of the 21st century," European Economic Review, Elsevier, vol. 127(C).
    12. Zhao, Xin & Calvin, Katherine & Patel, Pralit & Abigail, Snyder & Wise, Marshall & Waldhoff, Stephanie & Hejazi, Mohamad & Edmonds, James, 2021. "Impacts of interannual climate and biophysical variability on global agriculture markets," Conference papers 333245, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Elke Stehfest, 2014. "Food choices for health and planet," Nature, Nature, vol. 515(7528), pages 501-502, November.
    14. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    15. Bartelings, Heleen & Kavallari, Aikaterini & van Meijl, Hans & Von Lampe, Martin, 2016. "Estimating the impact of fertilizer support policies: A CGE approach," Conference papers 332684, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Hertel, Thomas & Baldos, Uris Lantz & Fuglie, Keith O., 2019. "Trade in Technology: A Potential Solution to the Food Security Challenge of the 21st Century," Conference papers 333121, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. H. Charles J. Godfray & Sherman Robinson, 2015. "Contrasting approaches to projecting long-run global food security," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 31(1), pages 26-44.
    18. Lanz, Bruno & Dietz, Simon & Swanson, Tim, 2018. "The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment," Ecological Economics, Elsevier, vol. 144(C), pages 260-277.
    19. Heinz-Peter Witzke & Pavel Ciaian & Jacques Delince, 2014. "CAPRI long-term climate change scenario analysis: The AgMIP approach," JRC Research Reports JRC85872, Joint Research Centre.
    20. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.

    More about this item

    Keywords

    Agribusiness;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:paaero:233003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/seriaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.