IDEAS home Printed from https://ideas.repec.org/a/ags/ndjtrf/262657.html
   My bibliography  Save this article

Have the Major U.S. Air Carriers Finally Turned the Corner? A Financial Condition Assessment

Author

Listed:
  • Gritta, Richard D.
  • Adams, Brian

Abstract

Rare prior to the deregulation of the airline industry, air carrier bankruptcies became rather endemic in the period 1982-2005. Since 1982, over 175 airlines have filed under the bankruptcy codes. This number includes eight of the carriers that were formerly referred to as “trunk carriers,” now known as “Majors.” Major carriers are defined as those with annual revenues exceeding $1.0 billion. The purpose of this paper is to analyze the recent performance of these carriers using a statistical model specifically designed to predict the likelihood of financial stress for airlines. The paper will also update past research in this important industry to demonstrate the very precarious nature of profitability. The major reasons for the improvement of the industry’s profitability will be briefly discussed. The analysis will show that the current financial condition of the industry has improved significantly due to increased concentration and the market domination of some carriers, very low fuel costs facing the carriers, and the record low interest rates resulting from the Federal Reserve’s easy monetary policy. the industry may still be fragile or vulnerable to changes in these input factors.

Suggested Citation

  • Gritta, Richard D. & Adams, Brian, 2016. "Have the Major U.S. Air Carriers Finally Turned the Corner? A Financial Condition Assessment," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 55(2), August.
  • Handle: RePEc:ags:ndjtrf:262657
    DOI: 10.22004/ag.econ.262657
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/262657/files/V55n2_01-Financial-Condition-Assessment-.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/262657/files/V55n2_01-Financial-Condition-Assessment-.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.262657?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    2. Pamela K. Coats & L. Franklin Fant, 1993. "Recognizing Financial Distress Patterns Using a Neural Network Tool," Financial Management, Financial Management Association, vol. 22(3), Fall.
    3. Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
    4. Edward I. Altman, 1973. "Predicting Railroad Bankruptcies in America," Bell Journal of Economics, The RAND Corporation, vol. 4(1), pages 184-211, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piruna Polsiri & Kingkarn Sookhanaphibarn, 2009. "Corporate Distress Prediction Models Using Governance and Financial Variables: Evidence from Thai Listed Firms during the East Asian Economic Crisis," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 5(2), pages 273-304, July.
    2. Sajad Abdipour & Ahmad Nasseri & Mojtaba Akbarpour & Hossein Parsian & Shahrzad Zamani, 2013. "Integrating Neural Network and Colonial Competitive Algorithm: A New Approach for Predicting Bankruptcy in Tehran Security Exchange," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 3(11), pages 1528-1539, November.
    3. Rogelio A. Mancisidor & Kjersti Aas, 2022. "Multimodal Generative Models for Bankruptcy Prediction Using Textual Data," Papers 2211.08405, arXiv.org, revised Feb 2024.
    4. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
    5. Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
    6. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    7. Davalos, Sergio & Gritta, Richard D. & Adrangi, Bahram, 2007. "Deriving Rules for Forecasting Air Carrier Financial Stress and Insolvency: A Genetic Algorithm Approach," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 46(2).
    8. Virág, Miklós & Kristóf, Tamás, 2005. "Az első hazai csődmodell újraszámítása neurális hálók segítségével [Recalculation of the first Hungarian bankruptcy-prediction model using neural networks]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 144-162.
    9. Mselmi, Nada & Lahiani, Amine & Hamza, Taher, 2017. "Financial distress prediction: The case of French small and medium-sized firms," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 67-80.
    10. Wu, Desheng(Dash) & Liang, Liang & Yang, Zijiang, 2008. "Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 206-220, September.
    11. Su-Han Woo & Min-Su Kwon & Kum Fai Yuen, 2021. "Financial determinants of credit risk in the logistics and shipping industries," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(2), pages 268-290, June.
    12. Qunfeng LIAO & Seyed MEHDIAN, 2016. "Measuring Financial Distress And Predicting Corporate Bankruptcy: An Index Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 17, pages 33-51, June.
    13. Şaban Çelik & Bora Aktan & Bruce Burton, 2022. "Firm dynamics and bankruptcy processes: A new theoretical model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 567-591, April.
    14. Maurice Peat & Stewart Jones, 2012. "Using Neural Nets To Combine Information Sets In Corporate Bankruptcy Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 90-101, April.
    15. James R. Coakley & Carol E. Brown, 2000. "Artificial neural networks in accounting and finance: modeling issues," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(2), pages 119-144, June.
    16. Mahfuzur Rahman & Cheong Li Sa & Md. Abdul Kaium Masud, 2021. "Predicting Firms’ Financial Distress: An Empirical Analysis Using the F-Score Model," JRFM, MDPI, vol. 14(5), pages 1-16, May.
    17. J. F. Juliá-Igual & R. Cervelló-Royo & I. Berné-Lafuente, 2017. "Market value analysis of a Chinese e-commerce holding group: a multicriteria approach," Service Business, Springer;Pan-Pacific Business Association, vol. 11(3), pages 475-490, September.
    18. Greta Falavigna, 2006. "Models for Default Risk Analysis: Focus on Artificial Neural Networks, Model Comparisons, Hybrid Frameworks," CERIS Working Paper 200610, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    19. Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
    20. Dejan JOVANOVIĆ & Mirjana TODOROVIĆ & Milka GRBIĆ, 2017. "Financial Indicators As Predictors Of Illiquidity," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 128-149, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ndjtrf:262657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.trforum.org/journal/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.