IDEAS home Printed from https://ideas.repec.org/a/ags/joaaec/15060.html
   My bibliography  Save this article

Economic Criteria For Evaluating Commodity Price Forecasts

Author

Listed:
  • Dorfman, Jeffrey H.
  • McIntosh, Christopher S.

Abstract

Forecasts of economic time series are often evaluated according to their accuracy as measured by either quantitative precision or qualitative reliability. We argue that consumers purchase forecasts for the potential utility gains from utilizing them, not for their accuracy. Using Monte Carlo techniques to incorporate the temporal heteroskedasticity inherent in asset returns, the expected utility of a set of qualitative forecasts is simulated for corn and soybean futures prices. Monetary values for forecasts of various reliability levels are derived. The method goes beyond statistical forecast evaluation, allowing individuals to incorporate their own utility function and trading system into valuing a set of asset price forecasts.

Suggested Citation

  • Dorfman, Jeffrey H. & McIntosh, Christopher S., 1997. "Economic Criteria For Evaluating Commodity Price Forecasts," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 29(2), pages 1-9, December.
  • Handle: RePEc:ags:joaaec:15060
    DOI: 10.22004/ag.econ.15060
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/15060/files/29020337.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.15060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Figlewski, Stephen & Urich, Thomas, 1983. "Optimal Aggregation of Money Supply Forecasts: Accuracy, Profitability and Market Efficiency," Journal of Finance, American Finance Association, vol. 38(3), pages 695-710, June.
    2. Hein, Scott E. & Spudeck, Raymond E., 1988. "Forecasting the daily federal funds rate," International Journal of Forecasting, Elsevier, vol. 4(4), pages 581-591.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    5. Fama, Eugene F., 1984. "Forward and spot exchange rates," Journal of Monetary Economics, Elsevier, vol. 14(3), pages 319-338, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea BASTIANIN & Marzio GALEOTTI & Matteo MANERA, 2011. "Forecast evaluation in call centers: combined forecasts, flexible loss functions and economic criteria," Departmental Working Papers 2011-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    2. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
    3. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," Working Papers 20110301, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Díaz & Carlos Esparcia, 2021. "Dynamic optimal portfolio choice under time-varying risk aversion," International Economics, CEPII research center, issue 166, pages 1-22.
    2. Coelho dos Santos, Marcelo Bittencourt & Klotzle, Marcelo Cabus & Figueiredo Pinto, Antonio Carlos, 2016. "Evidence of risk premiums in emerging market carry trade currencies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 103-115.
    3. Paul D. McNelis & G.C. Lim, 1998. "Parameterizing Currency Risk in the EMS: The Irish Pound and Spanish Peseta against the German Mark," International Finance 9805001, University Library of Munich, Germany.
    4. Frederick Nieuwland & Willem Verschoor & Christian Wolff, 2000. "Exchange risk premia in the European monetary system," Applied Financial Economics, Taylor & Francis Journals, vol. 10(4), pages 351-360.
    5. Nijman, T.E. & Palm, F.C., 1991. "Recent Developments in Modeling Volatility in Financial Data," Papers 9168, Tilburg - Center for Economic Research.
    6. Nijman, T.E. & Palm, F.C., 1991. "Recent developments in modeling volatility in financial data," Other publications TiSEM 0c1ff78c-d484-43bb-bcc3-a, Tilburg University, School of Economics and Management.
    7. François-Éric Racicot & Raymond Théoret, 2009. "Integrating volatility factors in the analysis of the hedge fund alpha puzzle," Journal of Asset Management, Palgrave Macmillan, vol. 10(1), pages 37-62, April.
    8. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    9. Chang, Chia-Lin & Hsu, Hui-Kuang, 2013. "Modelling Volatility Size Effects for Firm Performance: The Impact of Chinese Tourists to Taiwan," MPRA Paper 45691, University Library of Munich, Germany.
    10. repec:wyi:journl:002087 is not listed on IDEAS
    11. Carlos Escanciano, J., 2008. "Joint and marginal specification tests for conditional mean and variance models," Journal of Econometrics, Elsevier, vol. 143(1), pages 74-87, March.
    12. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    13. Auer, Benjamin R. & Rottmann, Horst, 2014. "Is there a Friday the 13th effect in emerging Asian stock markets?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 1(C), pages 17-26.
    14. D Büttner & B. Hayo, 2012. "EMU-related news and financial markets in the Czech Republic, Hungary and Poland," Applied Economics, Taylor & Francis Journals, vol. 44(31), pages 4037-4053, November.
    15. Andreas Brunhart, 2014. "Stock Market's Reactions to Revelation of Tax Evasion: An Empirical Assessment," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(III), pages 161-190, September.
    16. Jamal Bouoiyour & Refk Selmi, 2015. "Exchange volatility and export performance in Egypt: New insights from wavelet decomposition and optimal GARCH model," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 24(2), pages 201-227, March.
    17. Ngozi G. Emenogu & Monday Osagie Adenomon & Nwaze Obini Nweze, 2020. "On the volatility of daily stock returns of Total Nigeria Plc: evidence from GARCH models, value-at-risk and backtesting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    18. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2015. "The impact of financial crises on the risk–return tradeoff and the leverage effect," Economic Modelling, Elsevier, vol. 49(C), pages 407-418.
    19. Yun-Shi Dai & Peng-Fei Dai & Wei-Xing Zhou, 2024. "The impact of geopolitical risk on the international agricultural market: Empirical analysis based on the GJR-GARCH-MIDAS model," Papers 2404.01641, arXiv.org.
    20. G. Boero & E. Marrocu, 2001. "Evaluating non-linear models on point and interval forecasts: an application with exchange rate returns," Working Paper CRENoS 200110, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    21. Conrad, Christian & Mammen, Enno, 2016. "Asymptotics for parametric GARCH-in-Mean models," Journal of Econometrics, Elsevier, vol. 194(2), pages 319-329.

    More about this item

    Keywords

    Consumer/Household Economics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:joaaec:15060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.