IDEAS home Printed from https://ideas.repec.org/a/ags/ijaeri/333836.html
   My bibliography  Save this article

Performance Evaluation Of An Evaporative Charcoal Cooler Utilizing Thin-Film Photovoltaic System For Preservation Of Avocado

Author

Listed:
  • Langat, Victor K.
  • Kanali, Christopher L.
  • Ronoh, Erick K.
  • Ondimu, Stephen N.
  • Ndirangu, Samuel N.
  • Roskilly, Tony
  • Royapoor, Mohammad
  • Laidler, Paul

Abstract

Fruits are high moisture agricultural produce rendering them highly perishable hence the danger of postharvest losses is also lurking when there are inadequate storage facilities. The losses result from physical, chemical, and physiological changes that are triggered by the loss in moisture content. Preservation of fruits using available and affordable technologies (such as charcoal coolers) can benefit small-scale farmers in minimizing postharvest losses. An evaporative charcoal cooler 4 m long, 4 m wide, and 2.5 m high providing a 40 m3 storage capacity was utilized in the study. The cooler with a 150 mm wide cavity filled with charcoal had a perforated pipe connected to a 1000-litrecistern raised at 2.5 m above the ground and connected to a water pump (Pedrollo PKm 60, Italy) that kept the charcoal wet by a drip system. The pump and the three axial fans (REC-21725 A2 W, USA) rated 180 cubic feet per minute (CFM) and 2600 revolutions per minute (RPM) were powered by fast fold thin-film PV (FFMAT-10, Renovagen, UK) system connected to a 10-kWh rated energy hub (FFENERGYHUB-10, Renovagen, UK). Temperature, relative humidity and product quality parameters (weight loss, total soluble solids, vitamin C content and firmness were evaluated).The evaporative cooler temperatures reduced significantly (P<0.05) with an average 25.0±0.37 oC and 32.1±0.99 ºC outdoors temperatures. The cooler relative humidity increased significantly (P˂0.05) averaging 76.8±1.6% and 43±2.8% for ambient conditions. The average cooling efficiency in the charcoal cooler was 83.0%.The percentage weight loss of the avocado was 3.9% and 7.5% for the cooler and outdoors respectively. The percentage vitamin C loss was 39.0% for the cooler and 49.6% for those kept outside. The total soluble solids in the cooler rose from 0.5 to 1.6 oBrix and 0.5 to 2.6 oBrix in ambient conditions. Firmness decreased from an average 65.0 N to 10.7 N and 65.0 N to 8.0 N after 12 days for samples in the cooler and ambient conditions, respectively. In conclusion, the evaporative charcoal cooler incorporated with thin-film PV system preserved the postharvest quality and extended the shelf life of hass avocado.

Suggested Citation

  • Langat, Victor K. & Kanali, Christopher L. & Ronoh, Erick K. & Ondimu, Stephen N. & Ndirangu, Samuel N. & Roskilly, Tony & Royapoor, Mohammad & Laidler, Paul, 2022. "Performance Evaluation Of An Evaporative Charcoal Cooler Utilizing Thin-Film Photovoltaic System For Preservation Of Avocado," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 8(2), April.
  • Handle: RePEc:ags:ijaeri:333836
    DOI: 10.22004/ag.econ.333836
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/333836/files/ijaer_08__18.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.333836?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eloy Velasco-Gómez & Ana Tejero-González & Javier Jorge-Rico & F. Javier Rey-Martínez, 2020. "Experimental Investigation of the Potential of a New Fabric-Based Evaporative Cooling Pad," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tejero-González, A. & Franco-Salas, A., 2021. "Optimal operation of evaporative cooling pads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Natesan Kapilan & Vijay Kumar Patil, 2023. "Development and evaluation of a low-cost evaporative cooling system for agricultural product storage," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 69(1), pages 48-53.
    3. Pilar Mercader-Moyano & Paula M. Esquivias, 2020. "Decarbonization and Circular Economy in the Sustainable Development and Renovation of Buildings and Neighbourhoods," Sustainability, MDPI, vol. 12(19), pages 1-6, September.
    4. Lanbo Lai & Xiaolin Wang & Gholamreza Kefayati & Eric Hu, 2021. "Evaporative Cooling Integrated with Solid Desiccant Systems: A Review," Energies, MDPI, vol. 14(18), pages 1-23, September.
    5. Salins, Sampath Suranjan & Reddy, S.V. Kota & Kumar, Shiva, 2022. "Modelling of a multistage reciprocating humidifier and performance analysis for various packing configurations," Energy, Elsevier, vol. 241(C).

    More about this item

    Keywords

    Agribusiness; Agricultural and Food Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ijaeri:333836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://ijaer.in/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.