Can machine learning improve prediction – an application with farm survey data
Author
Abstract
Suggested Citation
DOI: 10.22004/ag.econ.284919
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Baaken, Dominik & Hess, Sebastian, 2021. "Regionale Milchmengenprognose: Regressionsmodelle und Maschinelles Lernen im Vergleich," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317056, German Association of Agricultural Economists (GEWISOLA).
- Chen, Jian & Katchova, Ani L. & Zhou, Chenxi, 2021.
"Agricultural loan delinquency prediction using machine learning methods,"
International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 24(5), May.
- Chen, Jian & Katchova, Ani, 2019. "Agricultural Loan Delinquency Prediction Using Machine Learning Methods," 2019 Annual Meeting, July 21-23, Atlanta, Georgia 290745, Agricultural and Applied Economics Association.
- Baaken, Dominik & Hess, Sebastian, 2021. "Forecasting Regional Milk Production Quantity: A Comparison of Regression Models and Machine Learning," 2021 Conference, August 17-31, 2021, Virtual 315117, International Association of Agricultural Economists.
- Zhigui Guan & Yuanjun Zhao & Guojing Geng, 2022. "The Risk Early-Warning Model of Financial Operation in Family Farms Based on Back Propagation Neural Network Methods," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1221-1244, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ifaamr:284919. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/ifamaea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.