Author
Abstract
This study analyze the risk and return characteristics of commodity index investments against the LIBOR benchmark. Commodity-based asset allocation strategies can be optimized by benchmarking the risk and return characteristics of commodity indices with LIBOR index rate. In this study, we have considered agriculture, energy, and precious metals commodity indices and LIBOR index to determine the risk and return characteristics using estimation techniques in terms of expected return, standard deviation, and geometric mean. We analyzed the publicly available daily market data from 10/9/2001 to 12/30/2016 for benchmarking commodity indices against LIBOR. S&P GSCI Agriculture Index (SGK), S&P GSCI Energy Index (SGJ), and S&P GSCI Precious Metals Index (SGP) are taken to represent each category of widely traded commodities in the regression analysis. Our study uses time series data based on daily prices. Alternative forecasting methodologies for time series analysis are used to cross-check the results. The forecasting techniques used are Holt-Winters Exponential Smoothing and ARIMA. This methodology predicts forecasts using smoothening parameters. The empirical research has shown that the risk of each of the commodity index that represents agriculture, energy, and precious metals sector is smaller compared to its return, whereas LIBOR based interest rate benchmark shows higher risk compared to its return in recession, non-recession and overall periods.
Suggested Citation
Valluri, Subhakara, 2018.
"Commodity Indices Risk And Return Analysis Against Libor Benchmark,"
APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 12(3-4), December.
Handle:
RePEc:ags:apstra:292393
DOI: 10.22004/ag.econ.292393
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:apstra:292393. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.apstract.net/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.