IDEAS home Printed from https://ideas.repec.org/a/ags/aolpei/327259.html
   My bibliography  Save this article

Predicting the Impact of Internet of Things on the Value Added for the Agriculture Sector in Iran Using Mathematical Methods

Author

Listed:
  • FaghihKhorasani, Hanieh
  • FaghihKhorasani, Abbas

Abstract

In terms of water resources, Iran has less fresh water than its population demands. Also, due to climate change, inefficient management and excessive consumption of this vital resource, the water shortage situation is becoming more critical day by day. Searching for a solution for sustainable use of water sources, this study proposes utilizing the Internet of things technology in order to implement smart irrigation in agricultural lands in Iran. Investigating the economic impact of the Internet of Things in Iran’s agriculture sector is the purpose of this article. The most important advantages of using smart irrigation are decreasing water consumption and increasing the productivity of agricultural yields (e.g., fruits, vegetables, etc.). This research attempts to predict Iran's economic growth in the event of smart irrigation implementation in agricultural fields and farms. The effect of investment in smart irrigation on water consumption and agricultural production is estimated by regression with cross-sectional data. In the end, by using the information obtained through the mathematical method, Iran's economic growth through GDP growth is estimated in the case if the Internet of things technology is fully implemented and the full benefits of using this technology are gained.

Suggested Citation

  • FaghihKhorasani, Hanieh & FaghihKhorasani, Abbas, 2022. "Predicting the Impact of Internet of Things on the Value Added for the Agriculture Sector in Iran Using Mathematical Methods," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 14(3), September.
  • Handle: RePEc:ags:aolpei:327259
    DOI: 10.22004/ag.econ.327259
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/327259/files/543_agris-on-line-3-2022-faghihkhorasani-faghihkhorasani.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.327259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lee, In & Lee, Kyoochun, 2015. "The Internet of Things (IoT): Applications, investments, and challenges for enterprises," Business Horizons, Elsevier, vol. 58(4), pages 431-440.
    2. Salami, Habibollah & Shahnooshi, Naser & Thomson, Kenneth J., 2009. "The economic impacts of drought on the economy of Iran: An integration of linear programming and macroeconometric modelling approaches," Ecological Economics, Elsevier, vol. 68(4), pages 1032-1039, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Dongyang & Malik, Asad Waqar & Ravana, Sri Devi & Rahman, Anis Ur & Ahmedy, Ismail, 2024. "Mapping smart farming: Addressing agricultural challenges in data-driven era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    3. Fehmi Krasniqi & Hysni Terziu, 2021. "Challenges of Kosovo Micro Businesses," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 7, ejes_v7_i.
    4. Athanasios Tsipis & Asterios Papamichail & Ioannis Angelis & George Koufoudakis & Georgios Tsoumanis & Konstantinos Oikonomou, 2020. "An Alertness-Adjustable Cloud/Fog IoT Solution for Timely Environmental Monitoring Based on Wildfire Risk Forecasting," Energies, MDPI, vol. 13(14), pages 1-35, July.
    5. Chalise, Sudarshan & Naranpanawa, Athula & Bandara, Jayatilleke S. & Sarker, Tapan, 2017. "A general equilibrium assessment of climate change–induced loss of agricultural productivity in Nepal," Economic Modelling, Elsevier, vol. 62(C), pages 43-50.
    6. Bent Flyvbjerg & Alexander Budzier & Jong Seok Lee & Mark Keil & Daniel Lunn & Dirk W. Bester, 2022. "The Empirical Reality of IT Project Cost Overruns: Discovering A Power-Law Distribution," Papers 2210.01573, arXiv.org.
    7. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    8. Bettina Freitag & Lukas Häfner & Verena Pfeuffer & Jochen Übelhör, 2020. "Evaluating investments in flexible on-demand production capacity: a real options approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 133-161, April.
    9. Akhtar, Pervaiz & Khan, Zaheer & Tarba, Shlomo & Jayawickrama, Uchitha, 2018. "The Internet of Things, dynamic data and information processing capabilities, and operational agility," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 307-316.
    10. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    11. Osterrieder, Philipp & Budde, Lukas & Friedli, Thomas, 2020. "The smart factory as a key construct of industry 4.0: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 221(C).
    12. Deng, Ying & Cao, Zhitao & Yang, Na, 2024. "Understanding the nexus between fintech, natural resources, green investment, and environmental sustainability in China: A DYNARDL approach," Resources Policy, Elsevier, vol. 91(C).
    13. Elias G. Carayannis & David F. J. Campbell, 2021. "Democracy of Climate and Climate for Democracy: the Evolution of Quadruple and Quintuple Helix Innovation Systems," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(4), pages 2050-2082, December.
    14. Kumar, V. & Ramachandran, Divya & Kumar, Binay, 2021. "Influence of new-age technologies on marketing: A research agenda," Journal of Business Research, Elsevier, vol. 125(C), pages 864-877.
    15. Rasha Allam & Hesham Dinana, 2021. "The Future of TV and Online Video Platforms: A Study on Predictors of Use and Interaction with Content in the Egyptian Evolving Telecomm, Media & Entertainment Industries," SAGE Open, , vol. 11(3), pages 21582440211, August.
    16. Madhukar Patil & M. Suresh, 2019. "Modelling the Enablers of Workforce Agility in IoT Projects: A TISM Approach," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 20(2), pages 157-175, June.
    17. Abdel Ghafar, Ahmed Ismail & Vazquez Castro, Ágeles & Essam Khedr, Mohamed, 2019. "Multidimensional Self-Organizing Chord-Based Networking for Internet of Things," 2nd Europe – Middle East – North African Regional ITS Conference, Aswan 2019: Leveraging Technologies For Growth 201736, International Telecommunications Society (ITS).
    18. Vasja Roblek & Maja Meško & Alojz Krapež, 2016. "A Complex View of Industry 4.0," SAGE Open, , vol. 6(2), pages 21582440166, June.
    19. Artur Pollak & Agata Hilarowicz & Maciej Walczak & Damian Gąsiorek, 2020. "A Framework of Action for Implementation of Industry 4.0. an Empirically Based Research," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    20. Ardito, Lorenzo & D'Adda, Diego & Messeni Petruzzelli, Antonio, 2018. "Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 317-330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aolpei:327259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/fevszcz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.