IDEAS home Printed from https://ideas.repec.org/a/aes/infoec/v23y2019i1p26-36.html
   My bibliography  Save this article

Data Mining Methods on Time Price Series for Algorithmic Trading Systems

Author

Listed:
  • Cristian PAUNA

Abstract

Buy cheap and sell more expensive. This is the main principle to make a profit on capital markets for hundreds of years. The rule is simple but to apply it in practice has become a very difficult task nowadays, with very high price volatility in the financial markets. Once electronic trading was widespread released, reliable solutions can be found using algorithmic trading systems. This paper presents a data mining method applied to the time price series in order to generate buy and sell decisions using computational algorithms. It was found that an original data mining method based on the price cyclicality function gives us an important profit edge when it is about the capital investments on the short and medium term. The Cyclical Trading Method will be presented together with the main principles and practices to design and optimize trading software. Test results are also included in this article in order to compare the presented method with other known methodologies to trade the capital markets.

Suggested Citation

  • Cristian PAUNA, 2019. "Data Mining Methods on Time Price Series for Algorithmic Trading Systems," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 23(1), pages 26-36.
  • Handle: RePEc:aes:infoec:v:23:y:2019:i:1:p:26-36
    as

    Download full text from publisher

    File URL: http://revistaie.ase.ro/content/89/03%20-%20pauna.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:infoec:v:23:y:2019:i:1:p:26-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paul Pocatilu (email available below). General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.