IDEAS home Printed from https://ideas.repec.org/a/aea/jecper/v15y2001i4p43-56.html
   My bibliography  Save this article

Binary Response Models: Logits, Probits and Semiparametrics

Author

Listed:
  • Joel L. Horowitz
  • N. E. Savin

Abstract

A binary-response model is a mean-regression model in which the dependent variable takes only the values zero and one. This paper describes and illustrates the estimation of logit and probit binary-response models. The linear probability model is also discussed. Reasons for not using this model in applied research are explained and illustrated with data. Semiparametric and nonparametric models are also described. In contrast to logit and probit models, semi- and nonparametric models avoid the restrictive and unrealistic assumption that the analyst knows the functional form of the relation between the dependent variable and the explanatory variables.

Suggested Citation

  • Joel L. Horowitz & N. E. Savin, 2001. "Binary Response Models: Logits, Probits and Semiparametrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 43-56, Fall.
  • Handle: RePEc:aea:jecper:v:15:y:2001:i:4:p:43-56
    Note: DOI: 10.1257/jep.15.4.43
    as

    Download full text from publisher

    File URL: http://www.aeaweb.org/articles.php?doi=10.1257/jep.15.4.43
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matzkin, Rosa L, 1992. "Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice Models," Econometrica, Econometric Society, vol. 60(2), pages 239-270, March.
    2. McFadden, Daniel & Ruud, Paul A, 1994. "Estimation by Simulation," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 591-608, November.
    3. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    4. Ruud, Paul A., 2000. "An Introduction to Classical Econometric Theory," OUP Catalogue, Oxford University Press, number 9780195111644.
    5. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    6. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    7. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    8. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    9. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    10. Matzkin, Rosa L., 1993. "Nonparametric identification and estimation of polychotomous choice models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 137-168, July.
    11. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    12. Horowitz, Joel L & Spokoiny, Vladimir G, 2001. "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model against a Nonparametric Alternative," Econometrica, Econometric Society, vol. 69(3), pages 599-631, May.
    13. Rosa L. Matzkin, 1988. "Nonparametric and Distribution-Free Estimation of the Binary Choice and the Threshold-Crossing Models," Cowles Foundation Discussion Papers 889, Cowles Foundation for Research in Economics, Yale University.
    14. Amemiya, Takeshi, 1981. "Qualitative Response Models: A Survey," Journal of Economic Literature, American Economic Association, vol. 19(4), pages 1483-1536, December.
    15. Daniel McFadden, 1977. "Quantitative Methods for Analyzing Travel Behaviour of Individuals: Some Recent Developments," Cowles Foundation Discussion Papers 474, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    2. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    3. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    4. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    5. Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," NBER Working Papers 15276, National Bureau of Economic Research, Inc.
    6. Ziegler, Andreas, 2001. "Simulated z-tests in multinomial probit models," ZEW Discussion Papers 01-53, ZEW - Leibniz Centre for European Economic Research.
    7. William Greene, 2007. "Discrete Choice Modeling," Working Papers 07-6, New York University, Leonard N. Stern School of Business, Department of Economics.
    8. Lee, Lung-Fei, 1997. "Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results," Journal of Econometrics, Elsevier, vol. 82(1), pages 1-35.
    9. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    10. Jeremy T. Fox, 2018. "Estimating matching games with transfers," Quantitative Economics, Econometric Society, vol. 9(1), pages 1-38, March.
    11. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82(5), pages 1749-1797, September.
    12. Andreas Ziegler, 2010. "Individual Characteristics and Stated Preferences for Alternative Energy Sources and Propulsion Technologies in Vehicles: A Discrete Choice Analysis," CER-ETH Economics working paper series 10/125, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    13. Heinz König & Michael Lechner, 1994. "Some Recent Developments in Microeconometrics - A Survey," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 130(III), pages 299-331, September.
    14. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    15. Matzkin, Rosa L., 2019. "Constructive identification in some nonseparable discrete choice models," Journal of Econometrics, Elsevier, vol. 211(1), pages 83-103.
    16. Gould, Brian W. & Dong, Diansheng, 2000. "The Decision Of When To Buy A Frequently Purchased Good: A Multi-Period Probit Model," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-17, December.
    17. John Geweke & Michael P. Keane, 1997. "Mixture of normals probit models," Staff Report 237, Federal Reserve Bank of Minneapolis.
    18. Chen, Songnian, 2000. "Rank estimation of a location parameter in the binary choice model," Journal of Econometrics, Elsevier, vol. 98(2), pages 317-334, October.
    19. Horowitz, Joel & Keane, Michael & Bolduc, Denis & Divakar, Suresh & Geweke, John & Gonul, Fosun & Hajivassiliou, Vassilis & Koppelman, Frank & Matzkin, Rosa & Rossi, Peter & Ruud, Paul, 1994. "Advances in Random Utility Models," MPRA Paper 53026, University Library of Munich, Germany.
    20. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.

    More about this item

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:jecper:v:15:y:2001:i:4:p:43-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.