IDEAS home Printed from https://ideas.repec.org/a/aea/apandp/v110y2020p96-100.html
   My bibliography  Save this article

Algorithmic Social Engineering

Author

Listed:
  • Bo Cowgill
  • Megan T. Stevenson

Abstract

We examine the microeconomics of using algorithms to nudge decision-makers toward particular social outcomes. We refer to this as "algorithmic social engineering." In this article, we apply classic strategic communication models to this strategy. Manipulating predictions to express policy preferences strips the predictions of informational content and can lead decision-makers to ignore them. When social problems stem from decision-makers' objectives (rather than their information sets), algorithmic social engineering exhibits clear limitations. Our framework emphasizes separating preferences and predictions in designing algorithmic interventions. This distinction has implications for software architecture, organizational structure, and regulation.

Suggested Citation

  • Bo Cowgill & Megan T. Stevenson, 2020. "Algorithmic Social Engineering," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 96-100, May.
  • Handle: RePEc:aea:apandp:v:110:y:2020:p:96-100
    DOI: 10.1257/pandp.20201037
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/doi/10.1257/pandp.20201037
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/pandp.20201037.appx
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/pandp.20201037.ds
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    File URL: https://libkey.io/10.1257/pandp.20201037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Rodríguez Andrés & Voxi Heinrich S. Amavilah & Abraham Otero, 2021. "Evaluation of technology clubs by clustering: a cautionary note," Applied Economics, Taylor & Francis Journals, vol. 53(52), pages 5989-6001, November.
    2. Michael Allan Ribers & Hannes Ullrich, 2020. "Machine Predictions and Human Decisions with Variation in Payoffs and Skill," Papers 2011.11017, arXiv.org.
    3. Ashesh Rambachan & Jon Kleinberg & Sendhil Mullainathan & Jens Ludwig, 2020. "An Economic Approach to Regulating Algorithms," NBER Working Papers 27111, National Bureau of Economic Research, Inc.

    More about this item

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D91 - Microeconomics - - Micro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D91 - Microeconomics - - Micro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:apandp:v:110:y:2020:p:96-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.