IDEAS home Printed from https://ideas.repec.org/a/adr/anecst/y1998i51p209-225.html
   My bibliography  Save this article

Weak Laws of Large Numbers for Dependent Random Variables

Author

Listed:
  • Robert M. De Jong

Abstract

In this paper we will prove several weak laws of large numbers for dependent random variables. The weak dependence concept that is used is the mixingale concept. From the weak laws of large numbers for triangular arrays of mixingale random variables, weak laws for mixing and near epoch dependent random variables follow. Features of the weak laws of large numbers that are proven here is that they impose tradeoff conditions between dependence and trending of the summands.

Suggested Citation

  • Robert M. De Jong, 1998. "Weak Laws of Large Numbers for Dependent Random Variables," Annals of Economics and Statistics, GENES, issue 51, pages 209-225.
  • Handle: RePEc:adr:anecst:y:1998:i:51:p:209-225
    as

    Download full text from publisher

    File URL: http://www.jstor.org/stable/20076144
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanaya, Shin, 2017. "Convergence Rates Of Sums Of Α-Mixing Triangular Arrays: With An Application To Nonparametric Drift Function Estimation Of Continuous-Time Processes," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1121-1153, October.
    2. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    3. Christian Gourieroux & Joann Jasiak, 2022. "Long Run Risk in Stationary Structural Vector Autoregressive Models," Papers 2202.09473, arXiv.org.
    4. Joann Jasiak & Aryan Manafi Neyazi, 2023. "GCov-Based Portmanteau Test," Papers 2312.05373, arXiv.org.
    5. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adr:anecst:y:1998:i:51:p:209-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General or Laurent Linnemer (email available below). General contact details of provider: https://edirc.repec.org/data/ensaefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.