Weak Laws of Large Numbers for Dependent Random Variables
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kanaya, Shin, 2017.
"Convergence Rates Of Sums Of Α-Mixing Triangular Arrays: With An Application To Nonparametric Drift Function Estimation Of Continuous-Time Processes,"
Econometric Theory, Cambridge University Press, vol. 33(5), pages 1121-1153, October.
- Shin Kanaya, 2016. "Convergence rates of sums of a-mixing triangular arrays: with an application to non-parametric drift function estimation of continuous-time processes," CREATES Research Papers 2016-24, Department of Economics and Business Economics, Aarhus University.
- Kanaya, Shin, 2016. "Convergence rates of sums of α-mixing triangular arrays : with an application to non-parametric drift function estimation of continuous-time processes," Discussion Paper Series 646, Institute of Economic Research, Hitotsubashi University.
- Shin Kanaya, 2016. "Convergence rates of sums of α-mixing triangular arrays: with an application to non-parametric drift function estimation of continuous-time processes," KIER Working Papers 947, Kyoto University, Institute of Economic Research.
- de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019.
"Smoothed GMM for quantile models,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan, 2017. "Smoothed instrumental variables quantile regression, with estimation of quantile Euler equations," Working Papers 1710, Department of Economics, University of Missouri, revised 28 Feb 2018.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2018. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri.
- Christian Gourieroux & Joann Jasiak, 2022. "Long Run Risk in Stationary Structural Vector Autoregressive Models," Papers 2202.09473, arXiv.org.
- Joann Jasiak & Aryan Manafi Neyazi, 2023. "GCov-Based Portmanteau Test," Papers 2312.05373, arXiv.org.
- de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019.
"Smoothed GMM for quantile models,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2017. "Smoothed GMM for quantile models," Papers 1707.03436, arXiv.org, revised Feb 2018.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2018. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adr:anecst:y:1998:i:51:p:209-225. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General or Laurent Linnemer (email available below). General contact details of provider: https://edirc.repec.org/data/ensaefr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.